
MILP-based Deadline Assignment for End-to-End Flows in
Distributed Real-Time Systems

Bo Peng
Department of Computer

Science
Wayne State University
Detroit, Michigan, USA
et7889@wayne.edu

Nathan Fisher
Department of Computer

Science
Wayne State University
Detroit, Michigan, USA
fishern@wayne.edu

Thidapat Chantem
Department of Electrical and

Computer Engineering
Virginia Tech

Arlington, Virginia, USA
tchantem@vt.edu

ABSTRACT
End-to-end flows, which have a set of chainlike subtasks,
are widely used in distributed real-time systems. For in-
stance, multimedia and automative applications require that
subtasks finish executing on a chain of processors before
their end-to-end deadlines. The scheduling of such chained
subtasks decides the schedulability of a distributed real-
time system. Since the subtask priority assignment prob-
lem is NP-hard in general, most heuristics are presented to
schedule end-to-end flows in two separate steps. The first
step calculates intermediate relative deadlines for frames,
and the second step makes scheduling decisions under EDF
scheduling. Because the quality of the priority assignment
of subtasks will directly affect the schedulability of the dis-
tributed systems, the two separate steps may cause pes-
simism in schedulability analysis. To reduce potential pes-
simism, we combine the two steps in our novel dGMF-PA
(distributed generalized multiframe tasks with parameter
adaption) model. We present an algorithm based on mixed-
integer linear programming for optimally selecting frame rel-
ative deadlines in the dGMF-PA model. An approximation
algorithm is also proposed to reduce computational running
time. Our approximation algorithm has a tunable speed-up
factor of 1 + ε where ε can be arbitrarily small, with respect
to the exact schedulability test of dGMF-PA tasks under
EDF scheduling. Extensive experiments have shown that
our approximation algorithm (which is a sufficient schedula-
bility test) can schedule at most 44 % more than the HOSPA
algorithm.

Keywords
distributed generalized multiframe tasks with parameter adap-
tion model; distributed real-time system scheduling; mixed-
integer linear programming; approximation algorithms; EDF
scheduling; end-to-end flows

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

RTNS ’16, October 19-21, 2016, Brest, France
c© 2016 ACM. ISBN 978-1-4503-4787-7/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2997465.2997498

A job in the sporadic task model has an individual con-
tinuous unit of work. Sporadic tasks are independent except
for resource contention. Such simple models are concise and
able to represent many applications in uniprocessor systems,
but not precise enough to represent complex tasks in dis-
tributed systems. In practice, a multimedia function [19] or
a network service [16] usually consists of subtasks which may
have precedence constraints. An end-to-end flow models a
precedence graph as a chain in which a subtask becomes
ready to execute when its preceding subtasks on the chain
complete. In distributed real-time systems, subtasks of end-
to-end flows can be (sometimes have to be) assigned to exe-
cute on different processors. For instance, in common video
applications, data needs to be transformed from analog sig-
nals to digital signals. The digital signals are transmitted
over the networks and transformed back to analog signals
at the client side. These three steps have precedence con-
straints and can be modeled as an end-to-end flow.

The schedulability analysis for such distributed real-time
systems is drawing increased attention, as real-time appli-
cations are becoming more and more complex. Since the
problem of optimal task assignment in distributed real-time
systems is NP-hard [15], we assume that subtasks are stat-
ically assigned to processors before a schedulability test is
performed and focus instead on the priority assignment of
subtasks. Due to the NP-hardness [17] of priority assign-
ment for subtasks in end-to-end flows, many heuristics have
been presented. The schedulability analysis of most heuris-
tics consists of two independent steps. The first step is pri-
ority assignment and the second step utilizes the assignment
to make scheduling decisions. A priority assignment such as
PD (Proportional Deadline Algorithm) [17] can be efficient.
PD assigns subtasks relative deadlines that are proportional
to their execution times. However, such analysis often intro-
duces pessimism as schedulability hinges upon the effective-
ness of the priority assignment of subtasks. Iterative-based
methods [26] have been considered to improve schedulability
ratio. In such methods, the current iteration of priority as-
signment is calculated based on the parameters of the system
in preceding iterations, and the assignment can affect the
parameters in the next iterations. The iterations stop when
the system is schedulable or some stopping criterion is met.
However, pessimism also exists in iterative-based methods
since the priority assignment and schedulability analysis of
a system are not considered jointly in each iteration.

In order to reduce potential pessimism, we combine pri-

ority assignment under EDF scheduling and schedulability
analysis together into one framework which utilizes mathe-
matical programming. Two combined algorithms are devel-
oped under our dGMF-PA (distributed generalized multi-
frame tasks with parameter adaption) model which extends
the GMF-PA (generalized multiframe tasks with parame-
ter adaption) model [25]. The dGMF-PA model can repre-
sent end-to-end flows in distributed systems. The GMF-PA
model (which extends the GMF model [5]) consists of a set
of frames, each of which contains an execution time, a range
of relative deadlines, and a range of minimum inter-arrival
times. We refer to the minimum inter-arrival time among
frames as period for simplicity. We refer to an end-to-end
flow as a task and a subtask as a frame to be congruent with
the dGMF-PA model. The insight of our work is that dead-
lines and periods of frames are flexibly chosen to increase
the schedulability of distributed systems.

The first algorithm presented is a necessary schedulabil-
ity test (in general) under EDF scheduling. The algorithm
becomes an exact schedulability test and can select relative
deadlines and periods of frames when parameters are inte-
gers. An approximation algorithm, which is proved to be (in
general) a sufficient schedulability test, can reduce the run-
ning time and select its frame parameters. We also prove the
speed-up factor is 1+ε where ε can be arbitrarily small, with
respect to the exact schedulability test of dGMF-PA tasks
under EDF scheduling. Note that the two algorithms are
both offline algorithms. In other words, parameters are fixed
once parameter assignment and schedulability test have been
completed.

Section 2 surveys the related work pertaining to our dGMF-
PA model and the end-to-end flow model. We review the
GMF model and introduce our dGMF-PA model in Sec-
tion 3. Section 4 presents our combined algorithm which
uses mixed-integer linear programming (MILP) to get a nec-
essary schedulability test under EDF scheduling. An ap-
proximation algorithm of MILP is presented in Section 5.
In Section 6, we conduct extensive experiments and com-
pare them with state-of-the-art results. At last, Section 7
concludes this work and proposes future work.

2. RELATED WORK
In this section, we survey the related work pertaining to

the dGMF-PA model in Section 2.1, and the related work of
scheduling distributed end-to-end flows in Section 2.2.

2.1 The dGMF-PA Model
The dGMF-PA model is transformed from the generalized

multiframe task (GMF) model (see details in Section 3.1).
The GMF model was introduced by Baruah et al. [5] to ex-
tend the sporadic task model and multiframe task model
(MF) [20]. Frames in the GMF model are also executed in
order and thus form a “cycle” which can recur an infinite
number of times. In the non-cyclic GMF task model [21],
frames can execute out of order and thus reduce the pes-
simism of the modeling of software-defined radio [28]. The
recurring real-time task (RRT) model [6] is a generalization
of the GMF model to handle conditional codes. The non-
cyclic recurring real-time task model [4] can generalize all
the models referred to above.

The above models assume that parameters are fixed dur-
ing task specification time. The GMF-PA model [25] relaxes
this assumption by allowing parameters to be flexible and

chosen under frame constraints and cycle constraints. In
this paper, the dGMF-PA model is a distributed version of
the GMF-PA model. Similar flexible models, such as the
parameter-adaption model [10] and elastic model [9], are
also used in many applications.

There are many applications based on the MF model and
GMF model. Ding et al. [12] scheduled a set of tasks with
the I/O blocking property under the MF model. Ekberg
et al. [13] developed an optimal resource sharing protocol
for the GMF model. Andersson [3] presented a schedulabil-
ity analysis for the flows in multi-hop networks comprising
software-implemented Ethernet switches, according to the
GMF model. Peng and Fisher [25] presented a schedulabil-
ity analysis for multiple-segment self-suspending tasks under
EDF scheduling.

2.2 The Scheduling of End-to-End Flows
The schedulability analysis of distributed real-time sys-

tems has received much attention. Most applications in dis-
tributed real-time systems can be modeled by end-to-end
flows/tasks/transactions in which subtasks/frames of a flow
execute in a chainlike manner. Schedulability analysis of
such applications has been proposed both for the fixed pri-
ority (FP) scheduling and earliest deadline first scheduling
(EDF) algorithms.

For FP scheduling, Tindell and Clark [29] first proposed
a holistic analysis, which was later improved by the offset-
based analysis [22]. Such analysis calculates the worst-case
response time of each subtask to set the offset and jitter of
the succeeding subtask. The calculation is iterative. The
FP scheduling of end-to-end flows was further improved by
the offset based slanted technique [18] which exploits the
interdependencies among subtasks using offsets.

For EDF scheduling, the offset-based analysis [23] was
presented based on the similar analysis in FP scheduling.
Pellizzoni and Lipari [24] provided new response time anal-
ysis and iterative algorithm to improve the schedulability
analysis. In the iterative-based algorithms, deadline assign-
ment affects the offsets and jitters of subtasks which in turn
will affect the deadline assignment. Some existing dead-
line assignmnet algorithms include: PD [17], NPD [17], and
HOSPA [26].

In this paper, we utilize the demand bound function [7] in-
terface and mathematical programming to assign deadlines
and analyze schedulability. The iterative-based algorithms
cannot easily compute a demand bound function during an
interval length because the response time of a subtask de-
pends on the end-to-end flows in all processors.

3. MODEL
We review the GMF-PA model and define the dGMF-

PA model in Section 3.1. We review the end-to-end flow
model and apply our dGMF-PA model to end-to-end flows
in Section 3.2.

3.1 The Distributed Generalized Multiframe
Model with Parameter Adaption

In this section, we review the generalized multiframe tasks
with parameter adaption (GMF-PA) model for uniprocessor
systems and define the distributed generalized multiframe
tasks with parameter adaption (dGMF-PA) model.

In the GMF-PA model [25], let T = {τ0, τ1, ..., τn−1}
be the task system consisting of n generalized multiframe

tasks executing on a uniprocessor system. Each task τi =
[φ0
i , φ

1
i , φ

2
i , ..., φ

Ni−1
i] consists of Ni frames. In each frame

φji = (Eji , D
j
i , D

j
i , P

j
i , P

j
i), E

j
i is the execution time of the

frame φji . The lower bound of the relative deadline Dj
i (min-

imum inter-arrival time between consecutive frames P ji) is

Dj
i (P ji), and the upper bound of Dj

i (P ji) is D
j
i (P

j
i).

That is, the parameters Dj
i and P ji are chosen in the ranges

[Dj
i , D

j
i] and [P ji , P

j
i], respectively1. The Ni frames which

execute in sequence can be seen as a cycle that executes
infinitely. The cycle/end-to-end deadline 2 Di is the upper

bound of DNi−1
i +

Ni−2∑
j=0

P ji , and the period/cycle period Pi

is the upper bound of

Ni−1∑
j=0

P ji . Figure 1 shows an example

of a GMF-PA task when deadlines and periods of frames are
assigned.

In order to generate proofs and our combined algorithms
for distributed systems, we introduce our dGMF-PA model
for distributed systems based on the GMF-PA model for
uniprocessors. The dGMF-PA model can be reduced to the
GMF-PA model when the number of processors is one. Let
T = {τ0, τ2, ..., τn−1} be the task system of n dGMF-PA
tasks executing in a distributed system. Each task τi =
[τi,0, ..., τi,Q−1] consists of Q virtual tasks on corresponding

Q processors. Each virtual task τi,p = [φ0
i,p, φ

1
i,p, φ

2
i,p, ..., φ

Ni−1
i,p]

consists of Ni virtual frames and executes on processor p.

Each virtual frame φji,p = (Eji,p, D
j
i,p, D

j
i,p, P

j
i,p, P

j
i,p) is sim-

ilar to the frame in the GMF-PA model. In fact, there
are only Ni frames in a GMF task τi and we require that
each real frame must be statically assigned once on one pro-
cessor. We call a virtual frame φki,p a real frame if the
k’th frame of task τi is assigned on processor p, and we
call a virtual frame φji,p an empty frame if the frame is
not assigned on processor p. Figure 2 shows an example
of the dGMF-PA model. In an empty frame φji,p, we set

Eji,p = Dj
i,p = D

j
i,p = P ji,p = P

j
i,p = 0. For simplicity, we

also refer to a virtual frame as a frame (except when we
specify a virtual frame as a real frame or an empty frame).

The cycle deadline Di of task τi is the upper bound of
Q−1∑
p=0

DNi−1
i,p +

(Ni−2)∑
j=0

P ji,p

, and the period/cycle period Pi

is the upper bound of

Q−1∑
p=0

Ni−1∑
j=0

P ji,p. The cycle deadline con-

straint intuitively represents the offset of the last frame’s
absolute deadline from the release time of the task and
matches the traditional concept of an end-to-end deadline.
The minimum execution time of the frame in τi is Emini =

min{
Q−1∑
p=0

E0
i,p,

Q−1∑
p=0

E1
i,p, ...,

Q−1∑
p=0

ENi−1
i,p }, and the total execu-

1The specification of the bounds is out of the scope of this
paper; instead, we set the bounds in a fairly general manner
to compare our algorithm against existing work in Section 6.
2Note: the definition of Di is not same as the one in the
GMF-PA model [25]; we believe the new definition is more
appropriate for modeling an end-to-end constraint.

Ej
i Ej+1

i

Execution Time

· · ·
Dj

i

P j
i P j+1

i

Dj+1
i

Ej+2
i

Dj+2
i

P j+2
i

Ej−1
i

P j−1
i

Dj−1
i

· · ·

Figure 1: We omit “ mod Ni” in all super-
scripts for simplicity, e.g., deadline Dj+1

i should be

D
(j+1) mod Ni
i . This figure shows that Ni frames exe-

cute in sequence and release as soon as possible from
the j′th frame to the (j − 1) mod N ′ith frame.

Ej
i,p

Execution Time of Real Frames

· · ·
Dj

i,p

P j
i,p

Ej−1
i,p

P j−1
i,p

Dj−1
i,p

· · ·

Ej+1
i,p+1

· · ·

P j+1
i,p+1

Dj+1
i,p+1

Ej+2
i,p+1

Dj+2
i,p+1

P j+2
i,p+1

· · ·

Zero Execution Time of Empty Frames

· · ·

Processor p

Processor p + 1

Figure 2: The dGMF-PA task τi contains two vir-
tual tasks τi,p and τi,p+1. φji,p, φ

j+1
i,p+1, φ

j+2
i,p+1 and φj−1

i,p

are real frames which execute in sequence (the real
frames between j+ 2’th frame and j− 1’th frame are
omitted here).

tion time of task τi is Ei =

Q−1∑
p=0

Ni−1∑
j=0

Eji,p. The utilization

of task τi is Ui,p =

Ni−1∑
j=0

Eji,p/Pi, and the utilization of a

task system is Up =

n−1∑
i=0

Ui,p on processor p. The maxi-

mum utilization of a processor in the distributed system is

Ucap =
Q−1
max
p=0

Up.

In this paper, we consider that each frame of a task in the
dGMF-PA model has its relative deadline constrained to be
at most its period; that is, for all frames φji,p, D

j
i,p ≤ P ji,p.

This assumption ensures that each frame has completed be-
fore the release time of the successive frame and simplifies
the schedulability analysis for each processor.

We aim to optimally select relative deadlines (Dj
i,p) and

make scheduling decisions in this paper, under the basic
requirements as follows:

1. Eji,p ≤ D
j
i,p ≤ D

j
i,p ≤ D

j
i,p, ∀i, j, p

2. Eji,p ≤ P
j
i,p ≤ P

j
i,p ≤ P

j
i,p, ∀i, j, p

3. Dj
i,p ≤ P

j
i,p, ∀i, j, p

Ẽ0
i Ẽ1

i

Execution Time

· · ·

D̃0
i

D̃1
i

ẼNi−1
i

D̃Ni−1
i = D̃i

· · ·

Maximum JitterÕ0
i

Õ1
i

ÕNi−1
i

J̃0
i J̃1

i J̃Ni−1
i

Figure 3: This end-to-end flow τi consists of Ni
frames which can execute in different processors.
The deadlines and jitters ensure the execution se-
quence of frames.

4.

Q−1∑
p=0

DNi−1
i,p +

(Ni−2)∑
j=0

P ji,p

 ≤ Di, ∀i
5.

Q−1∑
p=0

Ni−1∑
j=0

P ji,p ≤ Pi, ∀i

A task system must obey the first two inequalities to be fea-
sible. The third inequality is the constrained frame deadline
property. The last two inequalities check whether a system
is feasible under the upper bounds Di and Pi. We refer to
the first three constraints as frame constraints and the last
two constraints as cycle constraints for the rest of this paper.

3.2 Distributed End-to-End Flows and the
dGMF-PA Model

In this section, we review the distributed end-to-end flow
model [24, 26] and apply the dGMF-PA model to the flows
where each local processor is scheduled by EDF.

For distributed end-to-end flows, we will use a tilde over
task parameters to distinguish from the dGMF-PA model.

A task system T̃ = {τ̃0, τ̃1, ..., τ̃n−1} consists of n distributed

end-to-end flows. Each task τ̃i = [φ̃0
i , φ̃

1
i , φ̃

2
i , ..., φ̃

Ni−1
i] con-

sists of Ni real frames. In each frame φ̃ji = (Ẽji , D̃
j
i , Õ

j
i , J̃

j
i),

Ẽji is the execution time, D̃j
i is the global relative deadline

which is relative to the activation time of the task, Õji is the
offset between the release time of a flow and the activation
time of the frame φ̃ji , and J̃ji is the maximum jitter between

the activation time and release time of the frame φ̃ji . The

end-to-end deadline of the task τ̃i is D̃i and period between

invocations of the task is P̃i. Frames can execute on differ-
ent processors and each frame can only be activated when
its preceding frame completes executing. Figure 3 shows an
example of an end-to-end flow model.

Now we translate a task in the end-to-end flow model to
one in the dGMF-PA model. For each end-to-end frame φ̃ji ,

we create Q virtual dGMF frames φji,p for p = 0, 1, . . . , Q−1.

If the original frame φ̃ji is assigned to processor p, all virtual

frames φji,q where q 6= p are empty frames in dGMF-PA. For

a real frame φji,p, the manner in which we set the parameter
of the frame depends upon the setting: 1) if the offsets and
global relative deadlines are not fixed by the designer, then
we can set trivial lower and upper bounds to the frame pe-

riod and relative deadline (i.e., Dj
i,p = P ji,p = Ẽji and P

j
i,p =

D
j
i,p = D̃i); or 2) if the offsets and/or deadlines are fixed by

the designer, then the trivial lower and upper bounds can
be used again for the frame period and relative deadline;

however, two additional constraints must be added: Õji =∑Q−1
q=0

∑j−1
`=0 P

`
i,q and D̃j

i = Dj
i,p+

∑Q−1
q=0

∑j−1
`=0 P

`
i,q. Clearly,

we can always set the frame execution Eji,p to be Ẽji,p. Jitter

J̃ji can be modeled as a new independent dGMF-PA frame

φj
′
i,p in which Ej

′
i,p = 0 and Dj′

i,p = D
j′
i,p = P j

′
i,p = P

j′
i,p = Jji,p.

This jitter frame is inserted before its corresponding frames
(both empty and real) φji,q for all q = 0, . . . , Q− 1; once the

jitter frame φj
′
i,p “completes”, then the frame φji,p is ready to

execute. The period of task τi is Pi = P̃i, and the end-to-end

deadline is Di = D̃i.
Due to the hardness of the frame assignment in distributed

systems [15], we assume that real frames of end-to-end flows
are statically assigned on processors (each jitter frame is
bundled with its real frame on a processor). Aside from real
frames on each processor p, we assign the other frames of
all tasks to be empty frames on each processor p. That is,
from the viewpoint of each processor p, all frames of tasks
execute on processor p where some frames are empty.

In this paper, we deviate somewhat from the typical end-
to-end flow semantics; in particular, in the end-to-end flow
model, it is often assumed that a frame is released as soon
as the previous frame signals it is complete. However, in
this paper, we assume that a frame is eligible to execute
only when its frame is released according to the period pa-
rameters of P ji,p. However, we conjecture that our schedula-
bility results will continue to hold for the usual end-to-end
semantics by permitting a frame to “early release” its job,
but keeping its absolute deadline fixed to the same it would
be in the dGMF-PA model (i.e., deadlines of frames do not
shift when early released). The rationale is that fixing the
deadlines but permitting early releases would only decrease
the total execution demand and thus preserve schedulabil-
ity. However, we leave proving this conjecture for future
research.

Our combined parameter selection and schedulability test
algorithms that are presented in Section 4 and 5 for the
dGMF-PA model are thus applicable to distributed end-to-
end flows.

4. THE EXACT DEADLINE ASSIGNMENT
OF END-TO-END FLOWS IN THE DGMF-
PA MODEL

In this section, we describe the combined technique of
deadline selection for each frame and schedulability analysis
under our dGMF-PA model by using mixed-integer linear
programming (MILP) under EDF scheduling which utilizes
demand and supply bound functions. The deadline of each
frame is flexible subject to the frame and cycle constraints.
Along with the selection, the schedulability analysis pro-
vides a necessary feasibility test for arbitrary real-valued
task parameters. We prove the sufficiency and necessity of
the schedulability test when task parameters are integers.

MILP is a mathematical optimization model that contains
three parts: an objective function, constraint functions, and
ranges of variables. A subset of variables can be restricted
to integers in MILP. An MILP aims at finding the opti-
mal value of the objective function under the restriction of
constraint functions. We build our MILP to select the rela-

tive deadlines for all frames. At the same time, MILP gives
a necessary feasibility test. However, note that for non-
integer parameters, since the MILP is only necessary, the
returned selection of deadlines may not be feasible. Later,
in Section 5, we will give an approximation algorithm for the
MILP that returns a feasible selection of relative deadlines
for the non-integer case.

We first introduce the demand bound function and supply
bound function which are used for schedulability analysis on
a uniprocessor. We then show that our schedulability anal-
ysis for distributed systems breaks down to the analysis for
uniprocessor systems. The demand bound function dbfi,t,p
accounts for the task τi’s accumulated execution time of jobs
which have both release time and deadline inside any inter-
val of length t on processor p, and the supply bound function
sbft gives the lower bound of resources that the system can
supply over any interval of length t. Note that our MILP al-
gorithm can consider different supply bound functions sbft,p
for different processors. For simplicity, we consider the same
supply bound functions sbft over all processors. In general,
the sufficient and necessary condition for a uniprocessor fea-
sible system is given in Equation 1.

∑
τi∈T

dbfi,t,p ≤ sbft, ∀t, p. (1)

Since we allow deadlines to be variables and selected using
MILP, the demand in this case is also treated as a variable.
For instance, if we determine the demand over the interval
length t from some frame φki,p that arrives at the beginning of

the interval; if the relative deadline Dk
i,p is set to be smaller

or equal to t, then the demand from this job should be Eki,p;
otherwise the demand is zero. Note that the demand of an
empty frame φji,p is always zero since Eji,p = 0. Figure 4
illustrates a graph of this concept for an interval of length
t. The detailed notations will be introduced later. Using
the concepts above, Equation 1 becomes a set of constraint
functions that a feasible system must obey to find a relative
deadline assignment. In our algorithm, the supply bound
function is sbft = t and the length t of any interval length
is an integer. Our MILP can return an assignment if the
system is schedulable. That is, we can determine the neces-
sary feasibility of the system and select potential deadlines
at the same time.

The general steps of our algorithm are as follows. For
a given sequence of frames and a time interval of length t,
we calculate the demand contribution of each frame to that
interval length. Adding the demands of all frames generates
the demand of a task, and adding the demands of all tasks
(over all possible sequences of frames) generates the total
demand in each processor at the time interval length t. The
system is schedulable at a time interval length if the demand
is no larger than the supply in all processors. We check all
interval lengths, which are integers, in the algorithm.

For a given interval length t, we need to calculate the de-
mand for every possible sequence of frames of task τi,p over
any interval of length t and processor p. Assume that the
first frame of τi,p to arrive in such an interval is φji,p (i.e.,
the j’th frame on processor p). The demand of any sequence
starting with the j’th frame over a t-length interval is max-
imized if the j’th frame arrives exactly at the start of the
interval and subsequent frames arrive as soon as possible
(e.g., see Baruah et al. [5] for GMF schedulability). To cal-

culate the demand from the k’th frame in such an interval
for the specified sequence, yj,ki,t,p represents the demand of

this frame. We will calculate yj,ki,t,p for all possible i, j, k, p,
and t. For simplicity, we use “∀” to represent the ranges of
variables. The task index i ranges from 0 to n − 1. The
superscripts j and k represent the starting frame and the
current frame respectively, and both have the ranges from 0
to Ni−1. A processor p has the ranges from 0 to Q−1. It has
been shown [5] that the maximum interval length is bounded

by O(logn · Ucap
1−Ucap ·maxτi∈τ (Pi−D0

i)) where Ucap < 1. We

use H = dlogn · Ucap
1−Ucap ·maxτi,p∈τ (Pi−Emini)e as the maxi-

mum integer length interval since we do not know deadlines
beforehand in our dGMF-PA model. Note that the range of
any interval length t is shown in uniprocessor systems [5].
We choose the maximum utilization Ucap among processors
to calculate the maximum interval length H. We use such
abbreviations across this paper. The demand of the task τi,p
starting from the j′th frame in time interval length t is yji,t,p.
The maximum demand of τi,p among all starting frames is
yi,t,p.

Deadline Assignment and Feasibility Test

Initialization: Eki,p = Dk
i,p = P ki,p = 0 if φki,p is an

empty frame.
1 minimize: L
2 subject to:

3 Eki,pEki,pEki,p ≤Dk
i,pDk
i,pDk
i,p ≤ D

k
i,p ≤D

k
i,pD
k
i,pD
k
i,p, ∀i, k, p.

4 Eki,pEki,pEki,p ≤ P ki,pP ki,pP ki,p ≤ P
k
i,p ≤ P

k
i,pP
k
i,pP
k
i,p, ∀i, k, p.

5 Dk
i,p ≤ P ki,p, ∀i, k, p.

6

Q−1∑
p=0

Ni−1∑
k=0

P ki,p ≤ PiPiPi,
Q−1∑
p=0

DNi−1
i,p +

(Ni−2)∑
j=0

P ji,p

 ≤ DiDiDi, ∀i.
7 yj,ki,t,p = xj,ki,t,p ∗E

k
i,pEki,pEki,p + b tttPiPiPi c ∗E

k
i,pEki,pEki,p, ∀i, j, k, t, p.

8 ttt−tb
PiPiPi ≤ x

j,k
i,t,p − realminrealminrealmin

PiPiPi , ∀i, j, k, t, p.

9 tb =

Q−1∑
p=0

(k−j−1) mod Ni∑
q=0

P
(j+q) mod Ni
i,p


+Dk

i,p + b tttPiPiPi c ∗ PiPiPi

10 yji,t,p =

Ni−1∑
k=0

yj,ki,t,p, ∀i, j, t, p.

11 yi,t,p ≥ yji,t,p, ∀i, j, t, p.

12

n−1∑
i=0

yi,t,p ≤ L ∗ ttt ∀t, p.

13 and:

14 Dk
i,p, P

k
i,p, tb, y

j,k
i,t,p, y

j
i,t,p, yi,t,p,L ∈ R∗, xj,ki,t,p ∈ {0, 1}.

In the Deadline Assignment and Feasibility Test MILP,
the notations in bold font are constants and the other nota-
tions are variables. Lines 3 to 6 present the basic constraints
introduced in Section 3. Line 7 calculates the demand of
yj,ki,p,t. The interval length b tPi c tracks the number of cycle

periods in t, and b tPi c ∗ E
k
i,p is the demand of φki,p in such

cycle periods. The parameter xj,ki,t,p is restricted to be an
integer value and works as a “flag” (either 0 or 1) to decide
whether the demand Eki,p should be added in the interval
length t−b tPi c∗Pi as shown in Figure 4. Note that all frames

are released as soon as possible. The analysis of a demand in
[0, t−b tPi c∗Pi] is equal to the one in [b tPi c∗Pi, t]. The“flag”

xj,ki,t,p is decided by the constraints in Lines 8 and 9. Line 8 is

the constraint function that decides the value of xj,ki,t,p. The
length tb in Line 9 is the summation of the previous periods
b tPi c ∗ Pi and the distance from the starting j′th frame to

k′th frame

Q−1∑
p=0

(k−j−1) mod Ni∑
q=0

P
(j+q) mod Ni
i,p

+Dk
i,p.

The length tb ensures the sequence of real frames in dis-
tributed systems. That is, since the frames before φki,p may
be empty frames on the processor p, we add all the periods of
the j′th frame to k−1′th frame in all processors. For exam-

ple, the length tb =

(
Q−1∑
p=0

P 1
i,p +

Q−1∑
p=0

P 2
i,p

)
+D3

i,p+b tPi c∗Pi

if we consider the interval starting with the arrival of the first
frame and ending with the deadline of the third frame in the
end-to-end flow τi. In the inequality of Line 8, the lengths tb
and t decide whether the demand of the k′th frame in length
t− b tPi c ∗ Pi will be added to yj,ki,t,p. The constant realmin

is the smallest representable positive number. When t ≥ tb,
the flag xj,ki,t,p must be 1 and the demand xj,ki,t,p ∗ E

k
i,p con-

tributes to yj,ki,t,p. When t < tb, the flag xj,ki,t,p can be either

0 or 1. However, the demand yj,ki,t,p is overestimated when

xj,ki,t,p = 1. The solver MILP tends to choose 0 for xj,ki,t,p
because of the smaller demand, and the details are shown
in Lemma 1. Note that the inequality in Line 8 is always
correct when xj,ki,t,p is 1 and t ≥ tb, and when xj,ki,t is 0 and
t < tb.

yj,ki,t,p

D

(t, Ek
i,p)

Figure 4: The demand yj,ki,t,p in this figure is calcu-
lated when t is smaller than one cycle period by
combining Lines 7, 8 and 9. When the deadline of
frame φki,p ends inside the interval length t, the de-

mand yj,ki,t,p is Eki,p. Otherwise, the demand yj,ki,t,p is
zero.

In Line 10, the demand yji,t,p of task τi starts from the

j′th frame. In Line 11, the demand yi,t,p is the maximum
demand for τi,p over all possible starting frames. At last,

the demand of all tasks

n−1∑
i=0

yi,t,p has to be less than the

supply bound function for all interval lengths t and proces-
sors p as shown in Equation 1; otherwise, the system is not
schedulable. In Line 12, L is set to indicate the degree of
schedulability of the system. If the system is schedulable,
then L ≤ 1.

In the setting of our MILP, the variables Dk
i,p, P

k
i,p, tb,

yj,ki,t,p, y
j
i,t,p, yi,t,p, and L are free variables. The number of

all variables is pseudo-polynomial bounded. The flag xj,ki,t,p

is restricted to be an integer variable that is either 0 or 1.
The relationship among the variables is summarized in Fig-
ure 5. The boxes with solid lines contain free variables and
the boxes with dotted lines contain constants. The arrows
show the dependable relationships and the integers on the
arrows indicate the number of lines in the MILP. For exam-
ple, Lines 6 to 9 show that the constant Pi has an effect
on the variables P ki,p, tb, x

j,k
i,t,p and yj,ki,t,p. All variables are

connected and constrained in MILP. Eventually, minimizing

L also minimizes the total demand

n−1∑
i=0

yi,t,p.

Ek
i,p

Dk
i,p, P

k
i,p tb xj,ki,t,p yj,ki,t,p yji,t,p yi,t,p

3,4,7

9 8 7 10 11
L

12

P k
i,p, P

k
i,p

Dk
i,p, D

k
i,p

Di Pi t

Constants

Variables

3,4 6 6-9 7-9,12

Figure 5: Relationship among the parameters.

In our dGMF-PA model for distributed systems, we prove
that our MILP is a necessary schedulability test in general,
and the MILP is also a sufficient and necessary schedulabil-
ity test for integer parameters in Lemma 1 and Theorem 1.

Lemma 1. The value of yj,ki,t,p in the MILP is the exact

worst-case demand of frames φki,p over an interval of length
t when the first frame of τi to arrive in the interval is j′th
frame. (with respect to the deadline assigned to each frame
of τi,p by the MILP).

Proof. If the j′th frame is not assigned on the processor
p, the demand yj,ki,t,p is the exact worst-case demand which is
zero. The proof is straightforward since the frame does not
execute on the processor p.

When the j′th frame is assigned on the processor p, it is
trivial that yj,k

i,b tPi c∗Pi,p
is the exact demand b tPi c∗E

k
i in the

time interval length b tPi c∗Pi. We will prove that the worst-

case demand yj,ki,t′,p = xj,ki,t,p ∗ E
k
i,p is exact in the interval

length t′ = t−b tPi c∗Pi. Worst-case means that the interval

length t starts at the release time of the j′th frame and all
succeeding frames are released as soon as possible. We will
show that yj,ki,t′,p is an upper bound and a lower bound on the

demand. That is, the demand yj,ki,t,p is exact. For simplicity,

we refer to yj,ki,t′,p (xj,ki,t′,p) as y (x).

Assume that t′′ =

Q−1∑
p=0

(k−j−1) mod Ni∑
q=0

P
(j+q) mod Ni
i,p


+Dk

i,p, there are also two situations: when 0 ≤ t′ < t′′ and
t′′ ≤ t′ < Pi. Note that t′ is smaller than Pi from defi-
nition. When 0 ≤ t′ < t′′, x can be zero or one from the
MILP. Since we minimize L in MILP, y is also minimized to
take the value zero (by x = 0). When t′′ ≤ t′ < Pi, y has
to be Eki,p to satisfy the constraints in Lines 7 to 9 of our
MILP.

When 0 ≤ t′ < t′′, y = 0. The demand y is a lower bound
since no demand takes negative values. We prove that y

is an upper bound by contradiction. If there exist y′ > y,
y′ = Eki,p since x can only take an integer value one or zero.
In this case, t′ ≥ t′′ and get a contradiction with 0 ≤ t′ < t′′.
y is an upper bound and a lower bound when 0 ≤ t′ < t′′.

When t′′ ≤ t′ < Pi, y = Eki,p since x = 1. The proof of the
lower bound is similar to the proof of the upper bound when
t′′ ≤ t′ < Pi. That is the demand cannot be smaller than
y; otherwise, t′ will be smaller than t′′. We prove that the
demand y is an upper bound by contradiction. Assume that
the demand y′ is the upper bound which is larger than the
demand y = Eki,p. If y′ > Eki,p, the corresponding interval
length t′ has to be larger than Pi. This is a contradiction
since t′′ ≤ t′ < Pi. y is an upper bound and a lower bound
when t′′ ≤ t′ < Pi.

In total, the demand yj,ki,t,p is the exact worst-case demand

for the frame φki,p over an interval of length t when the first
frame of τi,p to arrive in the interval is the j′th frame.

Theorem 1. For arbitrary, real-valued parameters, our
MILP is a necessary feasibility test. When the period and
deadline parameters are integers (i.e., Dk

i,p, P ki,p ∈ N, ∀ i, k
and p), the MILP is an exact feasibility test.

Proof. It is straightforward to prove that our MILP is a
necessary feasibility test in general. If a distributed system

is feasible, the worst-case demand (

n−1∑
i=0

yi,t,p) of all tasks over

any interval length t must be smaller than t in any processor
p.

In Lemma 1, we have proved that yj,ki,t,p in the MILP is

the exact worst-case demand of frames φki,p over an inter-
val of length t when the first frame of τi to arrive in the
interval is the j′th frame. yji,t,p is thus the exact demand

of task τi,p over length t starting from the j′th frame, and
yi,t,p is the exact worst-case demand of τi,p over length t.
n−1∑
i=0

yi,t,p ≤ ttt is a sufficient feasibility test when Dk
i,p, P

k
i,p, t

∈ N. The algorithm is exact when the frame deadline and
period parameters are integers, since it can be easily shown
that the dbf changes value in this case only at integer times;
thus, the MILP exactly checks all the relevant time intervals.
Note that our MILP in general is not a sufficient feasibility
test when this integer constraint is removed since it does not
check all real values in the range [0, H].

Due to the fact that our MILP is not an exact feasibil-
ity test in general, we introduce a sufficient feasibility test
in general in Section 5. The sufficient feasibility test is an
approximation algorithm based on our MILP, where the run-
ning time is greatly reduced.

5. THE APPROXIMATION ALGORITHM
BASED ON OUR MILP

In the previous section, we have built our MILP which can
select the relative deadlines of dGMF-PA tasks under EDF
scheduling. The method also indicates a necessary feasibil-
ity test at the same time. However, solving an MILP is
NP-hard in general. Furthermore, the feasibility of selecting
deadlines in the dGMF-PA model is coNP-hard as the prob-
lem can be can be trivially transformed from the feasibility
test of sporadic tasks [14]. In this section, we will modify
the MILP to obtain an approximation algorithm based on

 0

 5

 10

 15

 20

 0 5 10 15 20

W
CE

T

Time

sbft
sbfta
dbft,p

Figure 6: The staircase function drawn in dashed
line is an example of demand dbft,p =

∑
τi∈T dbfi,t,p on

processor p. The x-axis values of square points on
sbfat are in the set Ta, which are enough to generate
a sufficient schedulablility test. In this example, the
total demand

∑
τi∈T dbfi,t,p ≤ sbft at all time interval

length t. But, the demand
∑
τi∈T dbfi,t,p > sbfat is

shown at the red circle.

reducing the number of time interval lengths being tested3.
We also show that the speed-up factor of our approximation
algorithm is 1 + ε with respect to the exact schedulability
test of dGMF-PA tasks under EDF scheduling. We have
introduced an approximation algorithm under the GMF-PA
model [25] and such similar technique can be traced back to
admission control for the arbitrary demand curves [11].

Assume that the number of time interval lengths being
tested in MILP is H (defined in Section 4), and the one
in the approximation algorithm is Ha. The set of time
interval lengths in MILP and the approximation are T =
{1, 2, 3, ..., H} and Ta, respectively. The supply bound func-
tion used in MILP is shown in Equation 2.

sbft = t. (2)

Since the number of variables and equations in MILP
depends on H, the size of MILP grows quickly when H
grows. We propose an approximation method based on re-
ducing the number of time intervals. We start from the
initial time interval length t0. The increasing rate is ε > 0.
We choose the interval length by the increasing rate; thus,
Ta = {t0, t0∗(1+ε), t0∗(1+ε)2, ..., t0∗(1+ε)Ha−2, H}. Note
that the Ha− 2′th element is no larger than H, and we add
H at the end as the Ha− 1′th element. Also, the increasing
rate between the last two elements is no larger than ε. For
example, the set Ta is [1, 1.5, 2.25, 3.375, ..., 17.0859375, 20]
for H = 20, t0 = 1 and ε = 0.5. The supply sbfat in the
approximation algorithm is shown in Equation 3.

sbfat =


0, 0 ≤ t ≤ t0
t0 ∗ (1 + ε)k, t0 ∗ (1 + ε)k < t ≤ t0 ∗ (1 + ε)k+1

H, t = H

(3)
3The approximation is still an MILP (and thus still poten-
tially intractable), but a reduction in constraints leads to a
significant improvement in efficiency as shown in the evalu-
ation section.

In our sbfat , the initial interval length is t0 = minτi∈T E
min
i

and the range of integer k is [1, Ha−2] in our approximation
algorithm. Figure 6 shows an example of the relationship
among

∑
τi∈T dbfi,t,p, sbft and sbfat on processor p. It is

straightforward to show that the number of elements in Ta
is O(log1+εH).

Next, we modify the general schedulability condition of
Equation 1 with respect to the reduced set Ta.

Theorem 2. Consider any distributed task system com-
posed of tasks T (e.g., dGMF-PA tasks) where the dbfi,t,p is
computable (e.g., see Peng and Fisher [25]) for any τi ∈ T
and p ∈ Q (Q is the index set of processors). Then, by
checking the following modified condition:∑

τi∈T
dbfi,t,p ≤ sbfat , ∀t ∈ Ta, p ∈ Q, (4)

where t0 of sbfat must not be larger than mini,j,p{
∑Q−1
p=0 D

j
i,p}.

We have the following guarantee:

1. If
∑
τi∈T dbfi,t,p ≤ sbfat , ∀t ∈ Ta, p ∈ Q, the dis-

tributed system is EDF-schedulable on unit-speed pro-
cessors.

2. If ∃t ∈ Ta and p ∈ Q,
∑
τi∈T dbfi,t,p > sbfat , the

system is EDF-infeasible where each processor is 1
1+ε

-
speed.

Proof. We first prove the sufficiency. If
∑
τi∈T dbfi,t′,p ≤

sbfat′ at an interval length t′ = t0 ∗ (1 + ε)k for any k ∈ Ha in

Equation 3, all demands over the range of intervals (t′
1+ε

, t′]
are also smaller than sbfat′ since the demand bound function
is a monotonically increasing function. In other words, the

system is schedulable on any interval length in (t′
1+ε

, t′] if the

system is schedulable on interval length t′. The test inter-
vals are thus reduced to the set Ta. If

∑
τi∈T dbfi,t,p ≤ sbfat

for all t ∈ Ta and p ∈ Q, all unit-speed processors are EDF-
schedulable. The distributed system composed by the pro-
cessors is also EDF-schedulable, which indicates the suffi-
ciency in the distributed system.

We prove the infeasibility on a slower processor when
Equation 4 is not satisfied (equal to the proof of the “speed-
up factor”). Assume

∑
τi∈T dbfi,p,t∗ > sbfat∗ at time interval

length t∗ and processor p. It must be that t∗ > t0 since for
all values of t ≤ t0, dbfi,t,p is zero by supposition that t0
exceeds the minimum frame relative deadline. Furthermore,
it is easy to observe that for all t ≥ t0, the sbft is at most
(1 + ε) times larger than sbfat . From this, we have:

max
t>0

∑
τi∈T dbfi,t,p

sbft
≥
∑
τi∈T dbfi,t∗,p

sbft∗

≥

∑
τi∈T dbfi,t∗,p

(1+ε)

sbft∗
(1+ε)

≥
∑
τi∈T dbfi,t∗,p

sbfat∗ ∗ (1 + ε)
(By Equation 3)

≥ 1

1 + ε
(By assumption).

Summing both sides of the above derived inequality, we

get: ∑
p∈Q

(
max
t>0

∑
τi∈T dbfi,t,p

sbft

)
≥ Q

1 + ε

Q ∗ max
t>0,p∈Q

∑
τi∈T dbfi,t,p

sbft
≥ Q

1 + ε

max
t>0,p∈Q

∑
τi∈T dbfi,t,p

sbft
≥ 1

1 + ε

Thus, we have proved that the speed-up factor is 1+ε over all
processors in distributed systems, with respect to the exact
schedulability test of dGMF-PA tasks under EDF schedul-
ing.

We can now apply Theorem 2 to modify the MILP to cre-
ate a sufficient approximate feasibility test for the dGMF-
PA task model with arbitrary, real-valued parameters. To
do so, we simply limit the range of t to now be Ta for all
constraints that depend upon t, and modify Line 12 of MILP

to be

n−1∑
i=0

yi,t,p ≤ L ∗
ttt

1 + ε
. Clearly, this reduces the num-

ber of constraints by a logarithmic factor (dependent upon
our choice of ε). We refer to this approximate assignment
algorithm as MILP-ε.

In all, the approximate MILP is a sufficient feasibility test.
The number of the time interval lengths is reduced from
O(H) to O(log1+εH). Since the number of variables and
number of equations depend on the number of time interval
lengths, the running time is greatly reduced.

6. EVALUATION
We have implemented our MILP and approximation algo-

rithm MILP-ε (ε > 0) using the commercial solver GUROBI [1]
in MATLAB. GUROBI is a state-of-the-art mathematical
programming solver that has great performance in solving
linear and mixed-integer programming problems. We com-
pare our work with the combination (represented by HOSPA-
Offset) of the deadline assignment HOSPA [26,27] and offset-
based analysis under EDF scheduling [23] in the MAST
suite [2].

In order to generate a fair comparison with HOSPA-Offset,
we set Dk

i,p = P ki,p (Line 5 in MILP will be automatically sat-

isfied) and Di = Pi. The variables Dk
i,p, P

k
i,p,Di, and Pi are

reduced to Dk
i,p and Pi for all i, k and p. In this case, the

end-to-end deadline of τi,p is Pi. Because HOSPA-Offset has

no frame constraints, we set Dk
i,p = Eki,p and D

k
i,p = Pi for

all frames. The constraints from Lines 3 to 6 of our MILP
and MILP-ε thus become:

1. Eki,pEki,pEki,p ≤ Dk
i,p, ∀i, k, p.

2.

Q−1∑
p=0

Ni−1∑
k=0

Dk
i,p ≤ PiPiPi, ∀i.

We follow the similar setting of the previous paper [26] to
randomly generate end-to-end flows (tasks). There are five
processors and eight tasks in the distributed system. Each
task contains five frames which are randomly assigned on
the processors in the distributed system. There are nine
system utilization levels (100%, 125%, 150%,..., 300%) each
of which contains fifty distributed systems. In each system,

we use the UUniFast algorithm [8] to generate the utilization
of each task and the execution time of each frame. We test
the schedulability ratio (the number of schedulable systems
over the number of total systems) and average running time
of the task sets on each utilization level.

For the reason that our MILP is not scalable in general,
we first generate Figure 7(a) and 7(b) in which tasks have
small cycle periods that are randomly chosen in [1,10]. Note
that each curve of MILP is a characterization of an “upper
bound” on the best we can hope for in our model. MILP-0.1
and MILP-0.3 have higher schedulability ratio than HOSPA-
Offset as shown in Figure 7(a), but have longer running time
as shown in Figure 7(b). MILP-0.1 can schedule at most 44
% more than HOSPA-Offset when Ucap = 2, and MILP-
0.3 can schedule at most 18 % more than HOSPA-Offset
when Ucap = 2. MILP is at most 19.1 times slower than
HOSPA-Offset, MILP-0.1 is at most 4.8 times slower than
HOSPA-Offset, and MILP-0.3 is at most 0.5 times slower
than HOSPA-Offset.

In order to generate a set of tasks with larger cycle pe-
riods, we have the experiments shown in Figure 7(c) and
7(d). The cycle period of each task is randomly chosen in
[1,1000]. Figure 7(c) shows that any experiment with ε ≤ 0.3
will generate better schedulability ratio than HOSPA-Offset.
MILP-0.3 can schedule at most 18 % more than HOSPA-
Offset when Ucap = 2, and MILP-0.3 uses at most around
303 seconds more than HOSPA-Offset when Ucap = 1.75.

In all, our MILP and MILP-ε algorithms always yield
higher schedulability ratio. The running time of the com-
bined technique HOSPA-Offset is shorter in general; how-
ever, our MILP-ε is not worse by much and still efficient
enough.

7. CONCLUSION
Upon the flexible GMF-PA model in uniprocessor sys-

tems, we propose the dGMF-PA model in distributed real-
time systems. The relative deadlines of frames in end-to-end
flows can be flexibly chosen in our dGMF-PA model, using
the mixed-integer linear programming (MILP). Our MILP-
based algorithm is an exact feasibility test when parameters
are integers, and a necessary feasibility test in general. In
order to reduce the running time of the MILP algorithm
and give an sufficient schedulability test (in general), we
propose an approximation algorithm MILP-ε based on the
supply bound function. The number of time interval lengths
is bounded by a logarithmic function of the task system pa-
rameters. We prove that the MILP-ε is a sufficient feasi-
bility test. Exhaustive experiments have shown that our
algorithms have improved the schedulability ratio compared
to the previous results.

In the future, we will work to further improve the effi-
ciency of our algorithm by considering other optimization
techniques that remove the integer requirement of our MILP.
We will also apply our algorithms to more complex task sets
(e.g., DAG tasks). Our overall goal is an algorithm that can
be used as an online optimization technique for determining
parameters in an interactive real-time distributed system
design framework.

Acknowledgments
We are grateful to the anonymous reviewers whose com-
ments have to significantly improve our paper. This research

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3

Sc
he

du
la

bi
lit

y
R

at
io

Task Utilization

MILP
MILP-0.1
MILP-0.3

HOSPA-Offset

(a) Pi ∈ [1, 10]

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 1 1.5 2 2.5 3
Av

er
ag

e
Ex

ec
ut

io
n

Ti
m

e
(S

ec
on

ds
)

Task Utilization

MILP
MILP-0.1
MILP-0.3

HOSPA-Offset

(b) Pi ∈ [1, 10]

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3

Sc
he

du
la

bi
lit

y
R

at
io

Task Utilization

MILP-0.3
HOSPA-Offset

(c) Pi ∈ [1, 1000]

(d) Pi ∈ [1, 1000]

Figure 7: The figures show the schedulability ratio
and average running time over task utilization from
one to three. Pi ∈ [1, 10] is in Figures 7(a) and 7(b),
and Pi ∈ [1, 1000] is in Figures 7(c) and 7(d).

has been supported in part by the US National Science
Foundation (CNS Grant Nos. 0953585, 1205338, 1618979
& 1618185).

8. REFERENCES
[1] Gurobi: The state-of-the-art mathematical

programming solver. http://www.gurobi.com/.

[2] Mast: Modeling and analysis suite for real-time
applications. http://mast.unican.es/.

[3] B. Andersson. Schedulability analysis of generalized
multiframe traffic on multihop-networks comprising
software-implemented ethernet-switches. In
Proceedings of the IEEE International Symposium on
Parallel and Distributed Processing, pages 1–8, April
2008.

[4] S. Baruah. The non-cyclic recurring real-time task
model. In Proceedings of the 31st IEEE Real-Time
Systems Symposium, pages 173–182, Nov 2010.

[5] S. Baruah, D. Chen, S. Gorinsky, and A. Mok.
Generalized multiframe tasks. Real-Time Systems,
pages 5–22, 1999.

[6] S. K. Baruah. Dynamic- and static-priority scheduling
of recurring real-time tasks. Real-Time Syst.,
24(1):93–128, Jan. 2003.

[7] S. K. Baruah, R. R. Howell, and L. Rosier. Algorithms
and complexity concerning the preemptive scheduling
of periodic, real-time tasks on one processor.
Real-Time Systems, 2:301–324, 1990.

[8] E. Bini and G. C. Buttazzo. Measuring the
performance of schedulability tests. Real-Time
Systems, pages 129–154, 2005.

[9] G. C. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni.
Elastic scheduling for flexible workload management.
IEEE Transactions on Compututers, pages 289–302,
2002.

[10] T. Chantem, X. Wang, M. Lemmon, and X. Hu.
Period and deadline selection for schedulability in
real-time systems. In Proceedings of the Euromicro
Conference on Real-Time Systems (ECRTS), pages
168–177, July 2008.

[11] F. Dewan and N. Fisher. Efficient admission control
for enforcing arbitrary real-time demand-curve
interfaces. In Proceedings of the 33rd IEEE Real-Time
Systems Symposium, pages 127–136, Washington, DC,
USA, 2012. IEEE Computer Society.

[12] S. Ding, H. Tomiyama, and H. Takada. Scheduling
algorithms for i/o blockings with a multi-frame task
model. In Proceedings of the 13th IEEE International
Conference on Embedded and Real-Time Computing
Systems and Applications, Aug 2007.

[13] P. Ekberg, N. Guan, M. Stigge, and W. Yi. An
optimal resource sharing protocol for generalized
multiframe tasks. Journal of Logical and Algebraic
Methods in Programming, 84(1):92 – 105, 2015.

[14] P. Ekberg and W. Yi. Uniprocessor feasibility of
sporadic tasks remains coNP-complete under bounded
utilization. In Proceedings of the 36th IEEE Real-Time
Systems Symposium (RTSS), 2015.

[15] M. R. Garey and D. S. Johnson. Computers and
Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., NY, USA,
1990.

[16] P. Jayachandran and T. Abdelzaher. Delay
composition in preemptive and non-preemptive
real-time pipelines. Real-Time Syst., 40(3):290–320,
Dec. 2008.

[17] J. Liu. Real-Time Systems. Prentice Hall, 2000.

[18] J. Mäki-Turja and M. Nolin. Efficient implementation
of tight response-times for tasks with offsets.
Real-Time Systems, 40(1):77–116, 2008.

[19] S. Matic and T. A. Henzinger. Trading end-to-end
latency for composability. In Proceedings of the 26th
IEEE International Real-Time Systems Symposium
(RTSS), pages 12 pp.–110, Dec 2005.

[20] A. Mok and D. Chen. A multiframe model for
real-time tasks. In Proceedings of the 17th IEEE
Real-Time Systems Symposium, pages 22–29, Dec
1996.

[21] N. Moyo, E. Nicollet, F. Lafaye, and C. Moy. On
schedulability analysis of non-cyclic generalized
multiframe tasks. In Proceedings of the 22nd
Euromicro Conference Real-Time Systems (ECRTS),
pages 271–278, July 2010.

[22] J. C. Palencia and M. G. Harbour. Schedulability
analysis for tasks with static and dynamic offsets. In
Proceedings of the 19th IEEE Real-Time Systems
Symposium, pages 26–37, Dec 1998.

[23] J. C. Palencia and M. G. Harbour. Offset-based
response time analysis of distributed systems
scheduled under edf. In Proceedings of 15th Euromicro
Conference on Real-Time Systems, pages 3–12, July
2003.

[24] R. Pellizzoni and G. Lipari. Improved schedulability
analysis of real-time transactions with earliest
deadline scheduling. In Proceedings of the 11th IEEE
Real Time and Embedded Technology and Applications
Symposium, pages 66–75, March 2005.

[25] B. Peng and N. Fisher. Parameter adaption for
generalized multiframe tasks and applications to
self-suspending tasks. In Proceedings of the 22nd
Embedded and Real-Time Computing Systems and
Applications (RTCSA), August 2016.

[26] J. M. Rivas, J. J. Gutiérrez, J. C. Palencia, and M. G.
Harbour. Schedulability analysis and optimization of
heterogeneous edf and fp distributed real-time
systems. In Proceedings of the 23rd Euromicro
Conference on Real-Time Systems (ECRTS), pages
195–204, July 2011.

[27] J. M. Rivas, J. J. Gutiérrez, J. C. Palencia, and M. G.
Harbour. Deadline assignment in edf schedulers for
real-time distributed systems. IEEE Transactions on
Parallel and Distributed Systems, Oct 2015.

[28] N. Tchidjo Moyo, E. Nicollet, F. Lafaye, and C. Moy.
Real time scheduling analysis for DSP base band
processing in multi-channel SDR set. In Proceedings of
the SDR Forum Technical Conference, Washington,
United States, Dec. 2009.

[29] K. Tindell and J. Clark. Holistic schedulability
analysis for distributed hard real-time systems.
Microprocessing and Microprogramming - Parallel
processing in embedded real-time systems.,
40(2-3):117–134, Apr. 1994.

