
On the Pitfalls and Vulnerabilities of Schedule
Randomization against Schedule-Based Attacks

Mitra Nasri1, Thidapat Chantem2, Gedare Bloom3, and Ryan M. Gerdes2
1 Delft University of Technology, Netherlands

2 Department of Electrical Engineering and Computer Engineering, Virginia Tech, USA
3 Department of Electrical Engineering and Computer Science, Howard University, USA

Abstract—Schedule randomization is one of the recently in-
troduced security defenses against schedule-based attacks, i.e.,
attacks whose success depends on a particular ordering between
the execution window of an attacker and a victim task within
the system. It falls into the category of information hiding (as
opposed to deterministic isolation-based defenses) and is designed
to reduce the attacker’s ability to infer the future schedule. This
paper aims to investigate the limitations and vulnerabilities of
schedule randomization-based defenses in real-time systems. We
first provide definitions, categorization, and examples of schedule-
based attacks, and then discuss the challenges of employing
schedule randomization in real-time systems. Further, we provide
a preliminary security test to determine whether a certain
timing relation between the attacker and victim tasks will never
happen in systems scheduled by a fixed-priority scheduling
algorithm. Finally, we compare fixed-priority scheduling against
schedule-randomization techniques in terms of the success rate
of various schedule-based attacks for both synthetic and real-
world applications. Our results show that, in many cases, schedule
randomization either has no security benefits or can even increase
the success rate of the attacker depending on the priority relation
between the attacker and victim tasks.

I. INTRODUCTION

Real-time systems are often designed to be predictable to sim-
plify the worst-case execution time (WCET) and schedulability
analyses, and to enforce deterministic runtime behaviors. This
timing predictability, however, can be exploited by attackers
to either directly influence a system’s behavior and/or steal
information, some of which can be used to increase the accuracy
of future attacks [1]–[3]. Such an exploitation is called a
schedule-based attack, where the success of the attack depends
on a particular ordering between the execution window of the
attacker and its targeted task [1]–[5]. For example, a cache-
timing attack becomes more efficient and accurate if the attacker
executes right before and after the execution window of its
target [1,2]. Similarly, in the domain of cyber-physical systems
(CPS) security, the success of a large number of attacks that
focus on compromising data integrity (e.g., to deceive the
control task, degrade the performance of the system, or damage
the environment) depends on the execution window of the
attacker and the time at which the system interacts with its
physical environment. For example, bias-injection attacks [6],
zero-dynamics attack, [6]–[11], and replay attacks [12] affect
the output of the controller and hence must be performed after
the targeted task completes, while false-data injection attacks

[13]–[17] must execute before the targeted task accesses its
input data.

Related work. There exist several defenses against schedule-
based attacks among which schedule randomization is the
main focus [1,3,5]. The goal of schedule randomization is to
diversify the schedule frequently enough so that it becomes
harder for the attacker to successfully guess when the targeted
task is going to be executed. For example, Yoon et al. [1]
introduced an online schedule randomization technique called
TaskShuffler that schedules a randomly chosen task from the
ready queue at each scheduling point. In order to guarantee
deadlines, the authors first derived the slack of each task
according to a fixed-priority scheduling policy, and then, at
runtime, the scheduler steals these slacks in order to execute
a randomly chosen (and potentially lower-priority) task. In
contrast, Krüger et al. [3] used fine-grained slot-level slacks to
provide more choices for the scheduler to select a random task
at runtime. The slot-shifting algorithm [18] was leveraged for
this purpose. Krüger et al. [3] also suggested an offline solution
that is based on pre-storing a set of randomly generated offline
schedules. Then, at runtime, the system non-deterministically
selects among these schedules after each hyperperiod.

Randomization falls into the category of information hiding,
where the security defense is based on hiding crucial/critical
information from the attacker by means of probabilistic pseudo-
isolation (instead of a strong deterministic isolation) [19]. It
has been primarily used in address-space layout randomization
(ASLR) for user- and kernel-space memory protection [20]–[23]
to defend the system against memory-corruption attacks such as
buffer overflows [24], format string exploits [25], double-free
attacks [26], etc. It is also used in control-flow randomization
[27] as a defense against code-reuse attacks.

It has been shown, however, that defenses that are based
on randomization (information hiding) can be broken easily
and efficiently, regardless of the size of the hidden objects
or the randomization entropy (i.e., the degree of uncertainty
in the random variables). For example, various types of
ASLR have been successfully brocken by leveraging allocation
oracles [28] and memory-disclosure vulnerabilities such as
cache side channels [29]–[31]. Trilla et al. [32] showed
that cache randomization solutions do not protect against
side-channel attacks in time-critical systems. The following
surveys introduce a large number of successful and efficient



penetrations to randomization-based defenses: [19,28,33] (for
ASLR) and [30,34,35] (for control-flow randomization). Similar
to this body of work, this paper discusses the limitations of
schedule randomization-based defenses for real-time systems
and evaluates their effectiveness against various types of
schedule-based attacks.

This paper. Following the work on schedule-based attacks
[1]–[3,36], we assume that the attacker has taken advantage of
the existing vulnerabilities in an untrusted task (e.g., a third-
party or an open source application) to hijack a task (called the
attacker task) in order to steal information from or to influence
the performance of another task (called the victim).

The paper starts with the system and threat model (Sec. II),
followed by definition, categorization, and examples of
schedule-based attacks in the context of uniprocessor real-time
systems (Sec. III). We then discuss the pitfalls and limitations
of schedule randomization methods as a security defense in
real-time systems (Sec. IV). We show that the existing schedule
randomization techniques may even increase the success rate
of certain types of attacks since they are oblivious to the
potential attacks and system vulnerabilities. For example, a
false-data injection attack may not be possible when the system
is scheduled using a fixed-priority scheduling policy if the
victim has a higher priority than other untrusted tasks. however,
schedule randomization may considerably increase the chance
that the attacker can manipulate the sampled data stored in an
I/O device buffer before the victim task accesses the data.

To provide a better understanding of security vulnerabilities
of the fixed-priority scheduling against schedule-based attacks,
we provide a preliminary security test that determines whether a
certain attack (i.e., a certain timing relation between two tasks)
can happen in the system (Sec. V). Finally, we evaluate the
existing schedule randomization methods and the proposed
security test against various types of attacks and priority
relations between the attacker and the victim tasks (Sec. VI).

II. SYSTEM AND ADVERSARY MODELS

To provide a better understanding of the vulnerabilities of
schedule randomization techniques and fixed-priority sche-
duling, we developed system and threat models inspired by
the adversary case studies of [2] and the schedule-based attack
scenario of [5]. As [2,5] do not provide a detailed system
model, we sought to specify the least complex, common system
configuration and weakest attacker that could realistically
enable the attacks described therein (i.e., timing-based side-
channels and actuation attacks), in addition to like threats (e.g.,
false-data injection) stemming from the underlying system
configuration that are common to CPS [37]. We will use this
attack model as a basis to provide a preliminary security test
for fixed-priority scheduling (in Sec. V) and to evaluate the
effectiveness of schedule randomization techniques (in Sec. VI).

System model. We consider a general system that is capable
of receiving external inputs and performing computations over
those inputs to arrive at a decision that results in an output that
is acted upon by an external agent. Additionally, the system

may make use of sensitive information during the reception
and/or transmission of inputs/outputs. The system makes use of
peripherals to obtain inputs and produce outputs. An instance of
our general system would be a real-time system for industrial
process monitoring; e.g., the Tennessee Eastman chemical
process [38]. In these systems individual tasks are responsible
for obtaining and filtering data from sensors about the state
of the process (reception of external inputs), determining the
proper response to meet process objectives (computations over
inputs), and issuance of commands to actuators to control the
process (action taken by external agent).

Specifically, we envision a system wherein: (i) a dedicated
peripheral (e.g., an analog-to-digital converter) is interfaced
with process monitor sensors (e.g., fluid level sensors) and
periodically reports the values of the sensors, which are
then filtered by an input task, using for example a moving
average filter or Kalman filter, to remove noise; (ii) the
resulting filtered data is written to a memory location and
then retrieved by a control task to determine appropriate
actuation commands according to some control logic; and (iii)
the actuation command is written to an output buffer, possibly
by the control task, of a peripheral interfaced to an actuator
(e.g., a pulse-width modulation peripheral that controls a servo
on a valve). We allow that communication between the system
and sensors/actuators could be digital and encrypted; thus, the
tasks associated with acquiring/producing input/output data
may use sensitive information (i.e., an encryption key).

Critically, a shared memory model is assumed that allows
tasks to read and write to (data) memory locations that are
used by all tasks. For example, a task that is responsible for
relaying sensor information to a display terminal could read
and write to the memory location(s) associated with filtered
sensor data.

More generally, since the paper is focused on the limitations
of schedule randomization methods, we follow the same real-
time system model used in [1,3,5]. The system consists of n
periodic tasks τ = {τ1, . . . , τn} scheduled upon a uni-processor
platform. Each task τi is identified by a WCET, denoted by Ci,
and a period Ti. The deadline of each task is equal to its period.
We assume that the best-case execution time (BCET) of a task
is an arbitrary non-zero value that is smaller than Ci. Tasks are
indexed according to their periods so that T1 ≤ T2 ≤ . . . ≤ Tn.

A hyperperiod H is the least-common multiple of the periods.
The utilization of a task τi is denoted by ui = Ci/Ti and the
total system utilization is U =

∑n
i=1 ui. Similar to [1,3], we

assume that tasks do not have precedence constraints.
To ensure that attacks must happen with stringent timing

accuracy, we assume a logical execution time (LET) paradigm;
e.g., Berkley’s Giotto architecture1 [39,40] which is a time-
triggered language and architecture for designing hard real-time
control systems. The LET approach has a wide applicability in
the automotive industry as it allows separation of the platform-
independent concerns such as software functionality and I/O
timing from platform-dependent concerns such as software

1 https://ptolemy.berkeley.edu/projects/embedded/giotto/
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scheduling and execution [41]. In particular, in Giotto and its
successors [42,43], the system interacts with the I/O devices
only at certain time instances such as task releases. This
enables a jitter-free sampling and actuation and hence improves
system’s predictability. Giotto has been used in applications
such as an autonomously flying model helicopter [44,45] and
electronic throttle controllers [39,40] to mention a few.

Adversary model. We consider an adversary that has com-
promised a single task on the system and is in control
of/able to modify the control flow of the task (i.e., during the
execution window of the task under control, the attacker can
run arbitrary code). We assume that the attacker cannot change
the scheduling parameters of her/his task or the parameters
of other tasks, hence, the attacker task must wait until being
scheduled by the scheduling policy. We consider an attacker
who can only observe the execution windows of the task under
its control, and that is unaware of the scheduling policy being
used. In Sec. III we define such an attacker as a WEAKEST
and DEFENSE UNAWARE attacker.

With respect to the system model, an attacker can have
one of three goals: (i) modify data at a memory location
before it is read by another task (ANTERIOR attack); (ii)
modify data at a memory location after it has been written by
another attack (POSTERIOR attack); or (iii) access data at a
memory location both before and after a task modifies data
at the location (PINCER attack). We define the ANTERIOR,
POSTERIOR, and PINCER attacks formally in Section III. An
example of an ANTERIOR attack would be a false-data injection
attack [13,14,16,17] against the sensing task described above,
while an ANTERIOR attack could take the form of a zero-
dynamics actuation attack [10] against the control task above.
Certain cache-style attacks [46] can be seen as instances of
the PINCER attack and could be useful in recovering sensitive
information that the task would not otherwise have access
to. For example, assume that an encryption key is kept in
inaccessible memory until needed by a task (as per above).
The PINCER attack could be used by the attacker to write to
the temporary location before the key is written there and then
query the same location after it is removed to infer key bits.

Our ANTERIOR attack is successful so long as it is performed
anytime after the arrival of the victim task, where the sampled
data becomes available and before the start time of the
victim task, where it reads the data from the memory. Our
POSTERIOR attack is successful as long as it is carried out after
the victim’s completion and before the actuation command is
transmitted to the actuator (which happens synchronously at the
victim task’s deadline) or the physical plant has the opportunity
to respond to the command. Our PINCER attack is successful
if the attacker is successful in landing both the ANTERIOR and
POSTERIOR attacks on the same job of the victim task. Namely,
it must be executed between the release and start time of the
victim task as well as between the completion and deadline
of the victim task. For the rest of the paper, we will make the
pessimistic, i.e., weakest, assumption that an opportunity for
an attack always results in a successful attack.

III. SCHEDULE-BASED ATTACKS

While schedule-based attacks have gained a significant
amount of attention by the real-time systems community in
the past couple of years, there still lacks a clear definition for
what it means for an attack to be successful, e.g., the type of
timing relation between the execution windows of an attacker
task and a victim task that is considered to be harmful. For
example, an attacker, whose goal is to manipulate the output of
a control task by overriding the data in the I/O device buffer,
is successful only if it is scheduled after the victim task writes
the outputs in the buffer and before the I/O device pulls the
new data from the buffer.

A formal definition of an attack is a fundamental step for
designing a defense mechanism and proving its success. For
example, the attack just described can be provably avoided by
a schedule-based defense mechanism that does not allow any
untrusted task to be scheduled after the victim task and before
the I/O device pulls the data from the buffer.

Schedule-based attacks are attacks whose success depends
on a particular timing relation between the execution windows
of the attacker and victim tasks. Hereafter, we use victim to
refer to a task that is targeted by the attacker and attacker
task(s) to refer to the task(s) that are already hijacked by the
attacker. In order to hijack a task, we assume that the attacker
has already taken advantage of the existing vulnerabilities in
software provided by third-party vendors or open source codes
as in existing work [1]–[3,36]. In the rest of this section, we
formally define schedule-based attacks and characterize an
attacker’s ability and knowledge according to what has been
proposed in the state of the art. Depending on the desired timing
relation between the attacker’s and victim’s execution windows,
schedule-based attacks can be categorized into four groups:
POSTERIOR, ANTERIOR, PINCER, and CONCURRENT attacks.

Definition 1. A POSTERIOR attack is an attack that must be
performed after the victim task completes its execution.

Examples. In control security, a large number of attacks have
focused on manipulating the outputs of a control task before
it is applied to the physical plant [6]. These include bias-
injection attacks [6], zero-dynamics attack2 [6]–[11], replay
attacks [12], etc. For example, a zero-dynamics attack happens
when the attacker generates outputs that maliciously disguise
as the unstable zero dynamics of the plant [8]. Zero-dynamics
vulnerability is created when the widely used sample and
hold mechanism is employed to convert an analog sample
to a digital one [10], and hence, exists in a large number of
control systems. These attacks, however, are very hard (or in
many cases, provably, impossible) to detect [10]. The following
studies provide a categorization of detectable and undetectable
(stealthy) zero-dynamics attacks [7,10,47].

Chen et al. [2] provided an example of a POSTERIOR attack
in real-time embedded systems: a rover robot that is manually
controlled by a remote controller. Here, the wifi-receiver task

2 https://www.youtube.com/watch?v=rqE9lewmRTk shows a video of zero-
dynamics actuation attack [10].
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is the victim and the goal of the attacker is to override the
commands that the wifi-receiver task writes to the I/O device
buffers before the data is pulled by the wheel controllers and
applied to the wheels3.

Schedule-based attacks usually have an event-based deadline,
i.e., a time frame during which they must happen or they are
ineffective otherwise. For example, the attacker mentioned
earlier must execute before the data produced by the victim
is used in any part of the system. Such timing constraint for
the attacker usually depends on the underlying software and
hardware platforms and varies from system to system.

Definition 2. An ANTERIOR attack is an attack that must be
performed before the execution of a victim task.

Examples. False-data injection attacks are a widely studied
class of ANTERIOR attacks that compromise data integrity by
manipulating the inputs of a control system [13,14]. Recently,
it has been shown that a large number of false-data injection
attacks can be theoretically stealthy [15]–[17]. This confirms
the importance of having a proactive defense against these
attacks in order to eliminate the attack before it can potentially
occur rather than having a passive defense that reacts towards
a detected attack, since many false-data injection attacks are
too difficult to detect. ANTERIOR attacks can also target
timing constraints of a real-time system [3], e.g., by creating
interference on shared system resources such as caches.

Definition 3. A PINCER attack is an attack that must be
performed before and after a victim task, e.g., to observe
(or pre-load) a side channel before the victim is executed and
probe it afterwards. The time interval between observing and
probing the side channel is called the attacker’s net.

Examples. Some examples of PINCER attack have been
proposed [1,2]. Chen et al. [2] designed a spyware whose
goal is to find the locations at which the system (a drone
in this case) takes high-resolution pictures. The attacker has
hijacked a task that can access GPS data, but which has no
access to the rest of the system except the cache. Since high-
resolution images can drastically change the state of the cache,
the attack is carried out by probing the cache before and after
the imaging task is executed in order to detect large cache
footprints. As soon as such a large footprint is detected, the
attacker stores the current GPS location4.

Definition 4. A CONCURRENT attack is an attack that must be
performed while the victim task is running. Depending on the
attacker’s goal, this can be equivalent with executing between
the execution windows of a job of the victim task.

Examples. A CONCURRENT attacker might have several goals,
for example, s/he might want to get the energy profile of various
parts of a victim task so that s/he can have a fine-grained
understanding of the functionalities performed by the task and
the order by which they happen. As demonstrated by Delimitrou

3 https://youtu.be/xVclU4rthOM shows a video of a POSTERIOR attack [2].
4 https://youtu.be/27zmJD0jMbM shows a video of a PINCER attack.

et al. [48] and Nathuji et al. [49], such an understanding allows
the attacker to maximize the interferences that s/he can cause on
shared system resources in order to reduce the performance or
quality of service of the victim task, or to cause a large timing
jitter (e.g., sampling and actuation jitters) for a victim task. In
safety-critical control tasks, these sampling and actuation jitters
reduce the quality of service to the extent that the system may
even become unstable [50].

In the rest of this section, we introduce some essential
properties of a schedule-based attacker that must be clarified
when defining an attack model.

Attacker’s prior knowledge. Yoon et al. and Krüger et al.
[1,3] assumed that the attacker has full knowledge of the
task set including tasks’ worst-case execution times (WCET)
and periods. Generally speaking, according to Kerckhoff’s
principle [51], the attacker can access any information about
the system’s parameters, architecture, and defense mechanism
being used, e.g., by acquiring and then reverse engineering
an instance of the system being attacked. Hence, we define
a DEFENSE AWARE attacker as an attacker who knows the
online schedule randomization method being used as well as
the offline schedules that are stored in memory.

However, the security defenses proposed by Yoon et al.
and Krüger et al. [1,3] are crucially based on hiding the
randomization method and the offline schedules. We call such
attacker a DEFENSE UNAWARE attacker5.

Attacker’s abilities to infer schedule-related information at
runtime. Some existing work [1,3] assumes that the attacker
can take control of some tasks in the system, hence, the attacker
is an insider. These work, however, do not provide a clear and
uniform description of the attacker abilities to infer schedule-
related information. For example, Yoon et al. [1] state that

”We do not make any specific assumptions on the attackers
ability to infer task schedule and to pinpoint the victim task(s).
The attacker may even have an ability to deduce the exact
schedule”. Our interpretation from this explanation is that the
attacker knows what has been scheduled in the past, but does
not know what will be scheduled in the future (and that is
why it makes sense to have an online randomization solution).
We call such attacker a STRONG attacker and assume that
it can observe the contents of the ready queue and knows
the remaining execution budget of the tasks. In practice, any
operating system that does not provide memory separation,
such as the OSEK family, can easily reveal such information
to the attacker (e.g., see Fig. 2 in Sec. IV).

Krüger et al. [3] assume that the attacker cannot access kernel
memory space. However, since the attacker is in the system, it
can at least observe its own execution windows. Depending on
how many tasks are in the control of the attacker, we consider
two other attacker types: the WEAKEST and WEAK attackers.
The WEAKEST attacker is in control of only one task in the
system and can only observe its own execution windows. The
WEAK attacker controls multiple tasks in the system, but can

5 We believe that hiding the architecture from the attacker by removing the
possibility of reverse engineering is not a realistic way to achieve security.
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only observe their execution windows. These tasks can either
directly communicate with each other or use covert channels.

Attacker’s ability to change task parameters. Except for
separation kernels, e.g., ARINC-653, an RTOS does not control
the activation pattern of a task. Instead, releases occur according
to the state of the system a task controls. Periodic control loops
are often implemented by an initial call to the RTOS to set
a timeout incident to the next period (for implicit deadline)
at the start of the job, and the job ends with an RTOS call
to sleep until a timeout is reached. If the timeout fires while
the task is still executing, then a budget overrun is detected.
Aperiodic and sporadic tasks either program a timer with their
next release, or the next release is triggered by an external
interrupt in an event-driven manner. In either case, tasks can
manipulate their own activation patterns, e.g., by changing
arguments to timer calls.

The state-of-the-art schedule randomization defenses [1,3]
are crucially based on having periodic behavior and no
execution-time overrun because otherwise they cannot guar-
antee deadlines. These defenses assume that the system
executes tasks within a reservation server which is periodically
activated by the trusted part of the system. Hence, the attacker
cannot influence its task’s parameters or overrun its budget.
Consequently, the attacker has a limited ability (if any) to affect
its own execution windows at runtime.

IV. LIMITATIONS, VULNERABILITIES, AND CHALLENGES
OF SCHEDULE RANDOMIZATION

This section discusses limitations of schedule randomization-
based defenses as well as the design challenges that they
introduce to real-time systems.

A. Limitations and Vulnerabilities

Attack-oblivious defense. Due to the size, weight, and power
(SWaP) constraints, embedded systems often do not have state-
of-the-art hardening techniques that are designed for servers or
personal computers. As a result, they may be more vulnerable
against certain types of attacks. For example, a system may
use cache partitioning to provide a strong cache isolation (e.g.,
for timing predictability requirements), however, it may not
apply an access-control policy on the I/O device buffers, e.g.,
due to performance requirements. While this exemplary system
is strong against PINCER cache-side channel attacks, it is
vulnerable against ANTERIOR and POSTERIOR attacks on data
integrity. To defend such a system against the latter attacks, one
can, for example, design a scheduler that does not schedule an
untrusted task before a trusted task accesses its data. However,
since the existing schedule-randomization techniques [1,3] are
oblivious to the potential attacks and system vulnerabilities,
they cannot secure a particular system and, hence, cannot
eliminate the attacks (as shown in Sec. VI).

Opening Pandora’s box. Due to their probabilistic nature,
schedule randomization defenses raise the success rate of
certain types of attacks. In fact, they may even allow a
schedule-based attack that would have been impossible when
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Fig. 1. Tasks τ1 = (1, 6), τ2 = (6, 9), and τ3 = (3, 18), where τi =
(Ci, Ti) is a periodic task whose WCET and period are Ci and Ti, respectively.
(a): Fixed-priority (rate-monotonic) schedule, (b,c): randomized schedules.

using a fixed-priority scheduling policy. For example, in a
periodic task set shown in Fig. 1-(a) scheduled by fixed-
priority scheduling policy, τ3 does not have any chance to
be directly executed before or after its target task τ1. However,
a randomized schedule such as that in Fig. 1-(b) leads to
successful ANTERIOR, PINCER, and CONCURRENT attacks.
Our experiments in Sec. VI show that, for example, while there
is no successful instance of an ANTERIOR attack when the
system is scheduled by the rate-monotonic scheduler and the
victim is the highest-priority task, the TaskShuffler scheduler
[1] causes 20% of the jobs of the victim task to be affected
by the ANTERIOR attack.

Limited choices. Unlike other randomization-based defenses
such as ASLR, schedule randomization is applied on two
dimensions, i.e., time and tasks. However, since these two
dimensions are dependent on one another due to the timing
requirements and constraints of the system (i.e., a task has
a bounded execution time that must be completed by its
deadline), the space of feasible choices of an online schedule
randomization method is limited to a subset of pending tasks.

Furthermore, the scheduler’s prior decisions will affect its
future decisions and may result in situations where there is
only one (or few) feasible choice(s) left. This creates a large
vulnerability surface, which makes it easier for the attacker to
predict the execution window of its victim. For example, in
Fig. 1-(c), the attacker (τ2) knows that the victim (τ1) has no
other choice but to be scheduled at time 4 or miss its deadline.

Schedule randomization may not prevent opportunistic
schedule-based attacks. As mentioned in Sec. III, some data-
integrity attacks are provably stealthy, e.g., they cannot be
distinguished from noise. Hence, the only way to deal with
them, when using a model-based detection approach, is to
use a deterministic solution to guarantee that these attacks
cannot happen. Another example is the opportunistic cache-
based attacks that may not even need an accurate guess about
the execution window of their target as long as other tasks
that are scheduled in the attacker’s net do not have a large
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Fig. 2. The RTOS design space covers a spectrum of solutions for providing
isolation between tasks in space (memory) and time (processing).

cache footprint. This, for example, happen in the scenario of
the PINCER attacker in [2].

Isolation may prevent attacks easily and efficiently. A basic
premise of schedule-based attacks is that an attacker knows
when a specific victim task will execute. This knowledge may
be prevented simply by providing strong temporal and spatial
isolation between the attacker and the victim. As shown in
Fig. 2, different RTOS designs provide a spectrum of isolation
from weak isolation, which is trivial to overcome by an
adversary, to strong isolation that requires compromising the
kernel to violate. Spatial isolation, i.e., memory protection and
access control, can prevent direct attacks on data by precluding
access to I/O buffers or sensitive controller registers except to
tasks that require such access as suggested by the principle of
least privilege. All but the simplest single-process RTOS are
capable of enforcing sufficiently strong enough spatial isolation
to effect such access control.

That is, the types of attacks schedule randomization is meant
to guard against largely concern preventing an adversary in
control of one task from accessing (i.e., reading and/or writing)
another task’s data within a given time window (see Sec. II).
Traditional techniques to prevent unauthorized access to data,
i.e., memory isolation, have been eschewed in limited resource
real-time systems due to overhead concerns [52]. Increasingly,
however, 32-bit microcontrollers come equipped with integrated
memory protection units (MPU) [53,54] with low enough
overhead to be used in real-time applications [55]–[57].

The MPU integrated with ARM Cortex-M3 and higher
microcontrollers6, for example, can accomodate memory iso-
lation for real-time tasks [58]. Specifically, in ARM parlance
memory can be assigned to a region by the MPU, which
controls how that memory is (or is not) accessed [59]. Memory
isolation could be achieved for tasks by defining a region
to cover all memory locations associated with task data and
deny all access by default (the memory locations are assumed
to be contiguous, for ease of exposition). Upon switching
tasks the memory associated with the new task would be
assigned a new region that allowed for read and/or write access
(Fig. 3). The total number of instructions necessary to load the
address of a task’s memory and update the MPU is somewhat
implementation specific but can be accomplished in as few as
thirteen instructions [60].

Therefore, with respect to spatial isolation, schedule ran-
domization should only be considered as potentially applicable

6Though the MPU is optional for this device family, it is extremely popular.

Fig. 3. Memory isolation for real-time systems using an MPU [59]: Region 0,
an access policy, encompasses all tasks’ data and disallows all access. Before
execution of a task, its data is switched to Region 3 by the MPU, which allows
read/write access; i.e., each task’s memory is unlocked before execution and
locked after execution. The settings of Region 3 take precedence over Region
0 so the MPU only needs to adjust a single access policy (Region).

for systems in which it is impossible to organize task data
to accomodate the MPU or the system lacks an integrated
MPU (typically 8- or 16-bit microcontrollers). It should be
noted that opensource cores for 8-bit microcontrollers have
been supplemented with efficient MPU-like capabilities [61].

Side-channel attacks may still be feasible despite spatial
isolation, but strong temporal isolation can reduce the effective-
ness of side-channels because the attacker has limited windows
of opportunity to observe the side-channel information. The
strongest temporal isolation occurs naturally with an RTOS
that uses a separation kernel, e.g., hypervisor solutions such
as PikeOS or avionics RTOSs with ARINC-653 partitions
like Deos or VxWorks653. Increasingly, safety-critical RTOS
adopt the separation kernel partitioning scheduler approach
to improve fault tolerance. Partitions are scheduled by the
kernel, typically from a static scheduling table or with static
time slices, and each partition schedules its own tasks. Often,
the scheduler inside a partition is a fixed-priority preemptive
scheduler, but other scheduling algorithms are possible to use
internally to the partition.
There is no valid security metric to evaluate schedule-
randomization defenses. While there exist several metrics
to measure information leakage [62,63], only one metric has so
far been used in real-time systems. Yoon et al. [1] introduced
schedule entropy to quantify schedule uncertainty against
schedule-based attacks. Schedule entropy is based on Shannon
entropy [64] in information theory, which describes the amount
of information (or uncertainty) in a random variable, or equiv-
alently, the uncertainty that a specific outcome actually occurs.
For a random variable X that can take values {x1, x2, . . . , xm},
Shannon entropy is H(X) = −

∑m
i=1 P (xi) · log2(P (xi)),

where P (xi) is the probability that the random variable X
takes value xi. For example, the entropy of a random variable
that represents tossing an unbiased coin is 1, because we
have no information that helps us to guess the final outcome.
However, if the coin is biased and has 90% chance to be a
head, then the entropy reduces to 0.46 because now we have
more information about the outcome.

Yoon et al. [1] defined schedule entropy as the uncertainty in
the schedule of one hyperperiod. It is obtained from the joint
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Fig. 4. All 12 random schedules that can be generated for three tasks τ1 =
(1, 4), τ2 = (2, 4), and τ3 = (1, 4).

entropy of a set of random variables S = (S1, S2, . . . , SL) for
L equal-length time slots in the hyperperiod. These random
variables are called slot variables and their domain is the set
of task indices, i.e., {1, 2, . . . , n}. Namely, St = i means that
task τi is executed at time slot t.

Definition 5. (Definition 4 from [1]: schedule entropy) The
schedule entropy of a task set τ is the Shannon entropy of the
distribution of the hyperperiod schedules S. Hence,

Hτ (S) = −
n∑

s0=1

n∑
s1=1

. . .

n∑
sL−1=1

P (s0, s1, . . . , sL−1)×

log2
(
P (s0, s1, . . . , sL−1)

)
, (1)

where si ∈ {1, 2, . . . , n} denotes the index of a task be-
ing executed at the ith time slot of the hyperperiod, and
P (s0, . . . , sL−1) is the probability mass function of the sched-
ule. The summand is 0 if P (s0, . . . , sL−1) = 0.

Schedule entropy, however, is not a security metric for
schedule-based attacks since it does not take the attack,
attacker’s goal, and attacker’s partial observations about the
system into account. A security metric must quantify the success
of a defense mechanism against the attack being considered.
Next, we show how drastically the attacker’s uncertainty
changes when considering a particular attack.

Example 1. Consider the task set in Fig. 4 and an ANTE-
RIOR attacker who has hijacked τ1 and wants to be scheduled
right before τ2. In the first hyperperiod, the attacker will be
successful if any of the three schedules S1, S2, and S4 happen.
Hence, the attacker’s success probability will be 3

12 = 0.25.
Now if we derive the Shannon entropy of a random variable
that shows attacker’s success, it will be –

(
0.25 · log(0.25) +

0.75 · log(0.75)
)

= 0.81 (since the probability that the attacker
fails is 0.75). However, according to Equation (1), the schedule
entropy of this example is 3.58 which is more than four times
larger than the attack-aware entropy. In other words, the
schedule entropy creates an illusion of security.

The second concern about the schedule entropy is that it
does not account for the attacker’s partial observations about its
execution windows. When the outcome of a random variable
provides information about the outcome of another random
variable, one must use conditional entropy instead of a simple
Shannon entropy. For example, if there are two boxes and two
balls that can go to either of these boxes, knowing what has
been put in the first box allows predicting which ball will go in
the second box. The following example shows how attacker’s
observation changes the game of schedule uncertainty.

(a) (b)
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Fig. 5. Task set τ1 = (1, 3), τ2 = (2, 7.5), and τ3 = (3, 13), scheduled
by: (a) fixed-priority scheduling policy and priority inheritance protocol and
(b) randomized scheduling policy. In this example, τ1 requires resource R1

from its start time while τ3 requires R1 one unit of time after its start.

Example 2. Assume the WEAKEST attacker (that is in the
possession of τ2) whose goal is to predict the execution window
of τ1 in a schedule shown in Fig. 1-(c). Since the attacker
has observed its own schedule from time 0 to 5, it accurately
predicts that the first job of task τ1 will be scheduled in the
interval [5, 6] since otherwise τ1 will miss its deadline. Similarly,
at time 13, where the attacker is activated, it knows that it has
been certainly scheduled right after the third job of τ1 because
it knows that it still has 5 units of execution time that must be
scheduled before time 18.

In this example, the schedule entropy according to
Definition 5 is 18.96 while the conditional probability
P
(
S5 = 1 | (S0 = 2, S1 = 2, S2 = 2, S3 = 2, S4 = 2)

)
= 1

and hence the conditional entropy of S5 is zero in this case.
Namely, there is no uncertainty in predicting what will be
scheduled at time 5.

B. Incompatibility with Real-Time Systems

Inflating WCET and CRPD. Schedule randomization drasti-
cally increases WCET and CRPD of the tasks since it allows
preemptions at any point in time. Furthermore, any combination
of co-running tasks can happen at runtime which increases the
WCET of a task due to interference on the shared resources,
e.g., cache. Fine-grained schedule randomization can have the
same effect on task’s execution as having no cache in the
system. Consequently, the WCET of the tasks calculated for
schedule randomization methods will be much larger than the
WCETs obtained for a deterministic scheduling policy.

Lack of seamless support for existing synchronization
policies. The existing schedule randomization techniques
assume that tasks are independent and do not share resources.
Going beyond this assumption, however, initiates fundamental
challenges for schedule randomization as randomizing the
schedule can easily cause unbounded blocking times. The
example in Fig. 5 shows that synchronization-oblivious sched-
ule randomization can cause deadline misses and unbounded
blocking. As shown in Fig. 5-(a), the task set is schedulable
when priority-inheritance protocol is used since it guarantees
that τ1 will not be blocked more than 2 units of time. However,
a randomized algorithm may preempt τ3 at time 15, where the
second job of τ2 is released (Fig. 5-(b)). Since τ1 is blocked
at this time and since τ3 has enough slack, the scheduler may
select τ2 to be scheduled for the next two time units. This,
however, either results in a deadlock situation or a deadline



miss for τ1. The former happens if the only criteria for selecting
a random task is the priority-inversion budget calculated merely
based on the WCETs and periods because, then, the priority
inversion budget of τ1 becomes 0 at time 17 and, hence, no
other lower-priority task is allowed to be scheduled.

Incompatibility with isolation-based defenses. Since sched-
ule randomization is designed to break down the predictability
of a schedule, it significantly increases the cost of closing side
channels with methods such as flushing the cache after task’s
execution [36,65,66].

Limited to task sets with fixed parameters. Since schedule
randomization enforces priority inversions to tasks with urgent
deadlines, it requires that other tasks in the system, including
the hijacked ones, always behave well, i.e., assuming that
these tasks do not overrun their WCET and do not change their
period or deadline. Such assumptions hold only if the operating
system is able to support reservation-based scheduling and does
not allow user-level tasks to add new tasks/processes to the
system or change their activation frequency.

Incompatibility with sporadic tasks. A sporadic task may
release a job when there is no other task in the system. This
significantly reduces the space of possible choices that are
available for schedule randomization. If the attacker keeps
generating jobs as frequently as possible, then it will be able to
pinpoint its victim task as soon as it finds a situation where there
is no other pending task in the system. Hence, opportunistic
attackers and/or STRONG attackers can easily break through
the schedule randomization when the target task is sporadic.

V. A SECURITY TEST FOR FIXED-PRIORITY SCHEDULING

This section provides a preliminary security test for task
sets scheduled by the fixed-priority scheduling. The test allows
evaluating whether a given victim task τv ∈ τ can be attacked
by a potentially untrusted task τa ∈ τ . We design the test
particularly on the adversary model introduced in Sec. II.
The following lemmas provide a set of conditions for the
possibility (or impossibility) of ANTERIOR, POSTERIOR, and
PINCER attacks occurring in fixed-priority scheduling. Intuitive
proofs have been omitted.

Lemma 1. A lower-priority attacker task can never perform
an ANTERIOR attack on a higher-priority victim task.

Lemma 2. An ANTERIOR attack is always successful if the
attacker has a higher priority than the victim and its period
divides victim’s period.

Proof. Since the victim job is always released together with
a job of the attacker task and since the attacker has a higher
priority than the victim, it is always scheduled between the
release time and start time of the victim.

Lemma 3. Task τa always performs a successful PINCER or
POSTERIOR attack on any job of a victim task τv if τa has
a higher priority than τv, Ta divides Tv, and Rwv < Tv − Ta,
where Rwv is the worst-case response time (WCRT) of task τv .

Proof. Since τa is always released together with τv and since
τa has a higher priority than τv, at least one of its jobs is
always scheduled between the release time and start time of
task τv . Moreover, since Rwv < Tv − Ta, every job of task τv ,
that is released at time t, certainly completes before the release
of the latest job of τa that released at t+ (Tv − Ta) because
t + Rwv < t + Tv − Ta. Note that since the two periods are
harmonic, during the interval [t, t+Tv), exactly k = Tv

Ta
−1 jobs

of τa are released at time instants t, t+Ta, t+2·Ta, . . . , t+k·Ta.
In other words, the kth job of τa after time t is released at
t+(Tv −Ta). Since t+Rwv < t+Tv −Ta, at least one job of
τa will be scheduled after the completion of any job of τv and
before the deadline of τv . Thus, τa lands both ANTERIOR and
POSTERIOR and hence, PINCER attack on every job of τv .

Lemma 4. Task τa cannot perform a successful POSTERIOR or
PINCER attack on any job of task τv if τa has a higher priority
than τv, Ta divides Tv, and Rbv > Tv − Ta, where Rbv is the
best-case response time (BCRT) of τv .

Proof. Since the periods of the attacker and victim tasks are
harmonic, any job of τv is released together with a job of τa.
Similar to the proof of Lemma 3, assume that τv is released
at time t, hence, the job releases of τa from time t happen at
t, t+ Ta, t+ 2 · Ta, . . . , t+ k · Ta, where k = Tv

Ta
− 1. Hence,

the latest job of τa before time t+ Tv is released at Tv − Ta.
According to the assumption, Rbv > Tv−Ta, hence, Rbv+t >

Tv−Ta+ t, namely, the earliest completion time of the current
job of τv will be later than the release time of the kth job of
the attacker, i.e., at t+k ·Ta. Since τv has a lower priority than
the attacker, starting from time Tv − Ta, it cannot be executed
unless τa completes. Since its BCRT is larger than Tv − Ta,
its completion time must be larger than the completion time
of the kth job of τa. Hence, the attacker cannot execute after
the completion and before the deadline of τv . This means that
the attacker will not be successful in landing a POSTERIOR or
a PINCER attack on any job of τv .

The BCRT and WCRT of a task for fixed-priority scheduling
can be calculated using various methods, such as Audsley’s
response-time analysis [67] or [68]. The correctness of Lem-
mas 3 and 4 does not depend on the accuracy of the method
used to calculate the BCRT and WCRT of the tasks as long
as the method is sound, i.e., the actual BCRT is larger than
or equal to (and the actual WCRT is smaller than or equal to)
what the response-time analysis method calculates.

Theorem 1. A task set τ is immune to an ANTERIOR attack
from the untrusted tasks τu ⊂ τ if Lemma 1 holds for any two
tasks τv ∈ τ \ τu and τa ∈ τu.

Theorem 2. A task set τ is immune to PINCER and POSTE-
RIOR attacks from the untrusted tasks τu ⊂ τ if Lemma 4
holds for any two tasks τv ∈ τ \ τu and τa ∈ τu.

Similarly, one can use Lemmas 2 and 3 to build a test
that determines whether an ANTERIOR (POSTERIOR) attack
certainly happens in the system.



VI. EMPIRICAL RESULTS

We conducted experiments to evaluate the success of existing
schedule randomization defenses against the schedule-based
attacks introduced in Sec. II. We considered a fixed-priority
scheduler (with rate-monotonic priorities) as a baseline and
compared it with three versions of TaskShuffler [1] with
randomization on tasks (TS1), on tasks and the idle task
(TS2), and a fine-grained randomization on tasks and idle
times (TS3). We have also implemented the online schedule
randomization proposed by Krüger et al. [3] which uses slot
shifting (SS). Unfortunately, it was too slow to provide us any
results for the Autosar-like task sets that we have generated in
the experiments since scheduling decisions must be made for
every time quantum. Hence, we limited the evaluation of SS
to a case study.

It is worth noting that this paper only partially evaluates
the schedule-randomization methods since currently there
is no sound and accepted way to measure the schedule
uncertainty. As mentioned in Sec. IV, the current schedule
entropy is optimistic and does not capture the attacker’s partial
observations. We believe that a thorough evaluation of schedule
randomization methods requires two further steps: first, an
actual case study with an actual schedule-based attack that
cannot be carried out without an accurate schedule inference,
and second, fundamental theories that allow quantifying the
uncertainty of schedule w.r.t. to a particular attack model. We
leave these steps as future work and focus on evaluating the
effect of schedule randomization on the attack success ratio
(ASR) for various schedule-based attacks. The ASR is measured
as the ratio of successful attacks (e.g., successful ANTERIOR)
to the number of jobs of the victim task. It also represents the
chance that a victim job is (positively) attacked.

Since the ASR depends on the timing properties of the
attacker and victim tasks, different attacker/victim assignment
scenarios result in different ASR. As a basis, we assume that
tasks are prioritized by the rate-monotonic priority ordering
and each task has a unique priority value (ties are broken
arbitrarily but consistently). Namely, assigning the attacker and
victim tasks is equivalent with assigning them to a priority
level. For example, v:HP a:LP means that the victim and
attacker are the highest- and lowest-priority tasks in the task set,
respectively. The horizontal axis of Fig.6-(g) to (i) shows our
scenarios for assigning the attacker and victim attacks, where
a denotes the attacker’s priority and v denotes the victim’s
priority. An attacker (victim) whose priority is denoted by
HP (or LP) has the highest (the lowest) priority in the task
set. Similarly, randomHP, randomMP, and randomLP mean
that the priority of the target task is chosen randomly from
{1, . . . , n3 }, {

n
3 +1, . . . , 2n3 }, and { 2n3 +1, . . . , n}, respectively,

where n is the total number of tasks in the task set. We then
used the attacker’s and victim’s priority on our security test.

A. Simulation Results

Task set generation. We conducted experiments by generat-
ing periodic task sets following the guidelines set forth by

Kramer et al. [69] from Automotive benchmark applications.
Specifically, for a given number of tasks n and utilization U ,
we sampled the (non-uniform) distribution of common periods
({1, 2, 5, 10, 20, 50, 100, 200, 1000}ms) reported by Kramer et
al. [69] to randomly draw a realistic period for each task. Then
we used the RandFixSum algorithm [70] to generate random
utilization ui for each task (with a total sum U ) to obtain Ci
by ui · Ti. We considered two experiments where we varied
U and n, respectively. For the first experiment (ExpU), we
considered n = 10 tasks and for the second experiment (ExpN),
we considered U to be between [0.1, 0.3]. Figs. 6 and 7 show
the results of these experiments, respectively. For each data
point in the diagrams, at most 1000 random task sets were
generated and each task set was executed for 10 hyperperiods.
The experiments were performed on a machine with 8-core
Xeon processor, 32GB of RAM, and a 1TB SSD.

Overall observations. Our results show that randomizing
the schedule does not eliminate ANTERIOR, POSTERIOR,
or PINCER attacks as shown in Fig. 6. In average, the
chance that ANTERIOR, POSTERIOR, and PINCER attacks
successfully affect a victim job despite using one of the
schedule randomization methods is about 38%, 60%, and 30%,
respectively (see Fig. 6-(a) to (c)). Moreover, these algorithms
do not perform noticeably better than the rate-monotonic
scheduler. Namely, in most cases, they either have no or a
very limited reduction in the attack success ratio. Furthermore,
as shown in Fig.6-(d) to (f), the TaskShuffler algorithm even
increases the ASR in comparison with RM scheduler. As we
discussed earlier, some attacks (e.g., ANTERIOR) are impossible
when RM is used and the victim has the highest priority.

In some other cases, e.g., v:LP, RM is totally vulnerable
against ANTERIOR, POSTERIOR, and PINCER attacks (shown
in Fig.6-(g) to (i)). However, even in these cases, the schedule-
randomization methods are either inefficient (e.g., against
POSTERIOR attacks shown in Fig.6-(h)) or do not considerably
reduce the attack’s success, e.g., against ANTERIOR and
PINCER attacks shown in Fig.6-(g) and (i).

The effect of utilization. We observed that in most of our
experiments, the task set utilization had only a limited effect
on the attack success ratio (e.g., in Fig. 6-(a) to (c)). However,
it did have a large impact on the v:HP a:LP scenario (as
shown in Fig. 6-(d) to (f)) because when the attacker’s task
has a higher utilization, it has a larger execution interval and
can be preempted more often. Consequently, its chance to be
scheduled before one of the victim’s jobs increases when a
schedule randomization method is applied.

The effect of priority assignment. As shown in Fig. 6-(g) to
(i), the relation between the attacker’s and victim’s priorities
(and periods) plays a key role in the attack success ratio. For
example, when the victim task has a lower priority than the
attacker (e.g., v:LP), victim’s jobs are more exposed to the
attacker’s jobs since the attacker has more jobs in a hyperperiod.
For instance, the chance that the victim’s job is affected by a
POSTERIOR attack reaches 100% for all scheduling policies
when the attacker is the highest-priority task (Fig. 6-(h)).
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Fig. 6. (a, b, c, d, e, f): attack success ratio when the priorities of the attacker and the victim have been chosen randomly (a, b, c) or the victim is the
highest-priority task and the attacker is the lowest-priority one (d, e, f) in ExpU, (g, h, i): attack success ratio for different priority relations between the
attacker and the victim and different types of attacks in ExpU, (j, k, l): attack detection rate and coverage of our security test w.r.t. RM’s result in ExpU,
(m, n, o): attack success ratio when the priorities of the attacker and the victim have been chosen randomly in ExpN.

On the other hand, when the attacker task has a lower priority
(larger period) than the victim task, it has fewer opportunities
to land an attack. Hence, the system is less vulnerable against
ANTERIOR and PINCER attacks (as shown in Fig. 6-(g) and
(i)). Noticeably, RM has a promising performance in those
cases since it does not allow any ANTERIOR or PINCER attack
to happen as discussed in Sec. V. This shows the importance
of analyzing the system before deciding to use a randomized
schedule, as the system may already be strong enough against
a certain type of schedule-based attacks.

Performance of the proposed security test. Fig. 6-(j)–(l)
report the performance of our security test measured by attack

detection rate (ADR), i.e., the ratio of task sets that deemed
not to be secure (i.e., rejected by Theorems 1 or 2), and
test coverage (TC), i.e., the number of task sets that we could
certainly decide about their security or insecurity. Higher values
of ADR represents higher attack success rate. For example,
Fig. 6-(j) shows that with the confidence 1 (shown with the bar
chart), we could identify cases where an ANTERIOR certainly
happens (true positive) or it certainly does not happen (false
negative). In that experiment, about 50% of the task set were
immune to ANTERIOR attack and the other 50% were certainly
prune to the ANTERIOR attack.

For POSTERIOR and PINCER attacks, however, we were only



TABLE I
THE TASK SET USED AS A CASE STUDY FROM [36].

confident about 44% of the task sets. As shown in Fig. 6-(k),
our test identifies all task sets to be insecure (i.e., the victim
task in the task set can be successfully attacked by the attacker
task). Yet, the test is not too pessimistic since the actual results
from simulating RM schedules and counting the attacks is not
very different from the result of the test. The error is in average
about 5%. The error, however, is larger for PINCER attacks as
they are less frequent to happen.
Effect of varying the number of tasks. As it can be seen
in Figs. 6-(m)–(o), the ASR does not change much when the
number of tasks varies. This is due to the fact that the period set
used in the experiment is almost harmonic, hence, the number
of tasks does not play a significant role in changing jobs’
release pattern in a hyperperiod as they are usually released
together with the tasks with smaller periods.

B. Case Studies

We consider two case studies to represent both the small-
scale systems with only a few periodic tasks to a larger system
with 18 periodic tasks.
Case study 1 (avionics system). As the first case study for a
small scale embedded system, we used the electronic control
unit (ECU) of an unmanned aerial vehicle (UAV) system
introduced in [36]. The system is composed of 6 periodic
tasks. The ECU communicates with the sensor devices such
as the GPS as well as the actuators and the camera that are
embedded in the system. Table. I reports the parameters of the
tasks in the case study. More details can be found in [36].
Case study 2 (fire control system). Here, we consider a real-
world application that implements a land-based fire control
system that is used for target tracking. The application is
implemented with a mix of C and Ada tasks and executes on a
PowerPC platform. It is a multi-mode application that consists
of 18 periodic tasks, but only a subset of them may be active
in any given mode. The application also has 28 background
tasks and the system idle task.

Table II shows the task set characteristics. For the WCET
we report the largest measured CPU usage over all the periodic
jobs of that task. The data was collected with the application
running for 5 minutes. Tasks 8 and 18 were unused in the
mode of operation that this table was generated from. Task 1
handles all the discrete and analog inputs in bulk. The other
tasks at 10ms period are the control loops. The task with 16ms
period does graphics processing, and the longer periods are for
refreshing an LCD screen, human I/O, and logging activities.
Results. Figs. 7-(a)–(c) and (d)–(f) report the ASR of different
attacks for the two case studies. The first observation is that the

TABLE II
PERIODIC TASK SET OF FIRE CONTROL SYSTEM APPLICATION

Task 1 2 3 4 5 6
Period (ms) 10 16 500 10 100 20
WCET* (ms) 0.465 2.794 2.461 2.986 3.627 0.703
ACET (ms) 0.138 0.578 0.553 1.337 1.588 0.226
Task 7 8 9 10 11 12
Period (ms) 500 0 1000 200 100 1000
WCET* (ms) 1.162 0 0.497 0.919 1.414 0.643
ACET (ms) 0.566 0 0.143 0.262 0.261 0.187
Task 13 14 15 16 17 18
Period (ms) 200 10 200 500 10 0
WCET* (ms) 4.317 0.424 1.299 2.901 1.062 0
ACET (ms) 2.914 0.114 0.42 2.064 0.323 0

schedule randomization methods do not eliminate the attacks,
in particular, they almost have no effect on POSTERIOR attacks
when the victim has a lower priority (see Figs. 7-(b) and
(e)). However, they can slightly reduce the ASR in case of
ANTERIOR attacks, where the victim task has the lowest
priority, i.e., v:LP, in comparison to RM. The reason is that
randomization may allow the victim (which is a lower priority
task) to be executed after its release and before the attacker.

We observed that SS (slot shifting-based randomization) is
more vulnerable than TaskShuffler w.r.t. PINCER and POSTE-
RIOR attacks because it significantly increases the interleaving
between the tasks and hence increases the chance of an attacker
to be executed after the victim. However, on the other hand, it
is more successful to reduce ANTERIOR attacks in cases where
the victim is the lowest-priority task (Figs. 7-(a) and (d)).

Comparing the two case studies, we observe that when in
the first one the number of ANTERIOR attacks is generally
smaller than the second case study, in particular for v:HP,
a:randomHP and v:HP, a:randomMP. The reason is that in the
first case study, the period of other higher or medium priority
tasks is 42, which is not harmonic with 10, hence, the chance
that they are scheduled before the highest-priority task due to
schedule randomization is lower than the second case study,
where there are more harmonic period combinations among
high and medium priority tasks.
Average number of preemptions. Fig. 8-(a) compares the
average number of calls-to-scheduler for the two case studies.
The slot shifting-based schedule randomization has up to three
orders of magnitude more calls to the scheduler than the other
online policies. For example, in the first case study, RM, TS1,
and TS2 have 1.5, TS3 has 1.8, and SS has 4320 call-for-
scheduler per job.

As mentioned by Yoon et al. [1], TaskSuffler does increase
the average number of preemptions per job, however, this
increase is not too large for TS1 and TS2 as shown in Fig. 8-
(b) for ExpU. TS3, on the other hand, performs fine-grained
randomization and hence allows a task to be preempted more
often. That is why with the increase in the utilization, the
number of preemptions of TS3 increases.

Summary. Our results for the case studies confirm that: (i)
the slot shifting-based schedule randomization [3] significantly
increases the number of preemptions per job to more than 3
orders of magnitude in comparison with RM or TaskShuffler,
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Fig. 7. (a, b, c): the ASR of the case study 1 for various attacks, (d, e, f): the ASR of the case study 2 for various attacks.
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Fig. 8. The average number of calls for scheduler per job in each hyperperiod
for (a): the two case studies, (b): ExpU in Sec. VI-A.

(ii) the schedule randomization algorithms do not eliminate
the attacks, in particular, they almost have no effect on
POSTERIOR attacks when the victim has a lower priority,
(iii) SS algorithm increases the number of POSTERIOR and
PINCER attacks when the victim is a higher-priority job.
This happens because it significantly increases the number
of interleaving between tasks and hence increases the ASR.
Our results confirms the need to design an attack-aware defense
mechanism against schedule-based attacks.

VII. CONCLUSIONS

Summary. In this paper, we focused on the limitations of
schedule randomization as a security defense against schedule-
based attacks, i.e., attacks whose success depends on a specific
ordering between a set of events, such as manipulating data
in a shared I/O device buffer before the victim task reads the
data. We provided definitions and examples of these attacks
and discussed the limitations of the schedule randomization-

based defenses against these attacks. Our results showed that
in some cases, e.g., when the victim is the highest-priority
task, randomizing the schedule increases the success rate of
a certain class of schedule-based attacks by 20% while those
attacks would have been impossible in a system scheduled by
a fixed-priority scheduling algorithm. We also observed that
certain classes of attacks cannot be avoided at all using either
schedule randomization or the fixed-priority scheduling. This
raises the need for incorporating a combination of defenses, e.g.,
isolation-based techniques and schedule-based techniques, to
guarantee a system’s immunity against schedule-based attacks.

Future work. Our preliminary security tests are mostly
focused on harmonic and semi-harmonic tasks since they are
conditioned to periods that divide each other. As future work,
we will focus on designing a more general (and accurate)
security analysis for fixed-priority scheduling that not only
identifies immunity to a certain type of attacks but also
determines the worst-case pattern of successful attacks on a
given victim. Such analysis allows us to co-design controllers
with the scheduling policy in order to reduce the impact of a
potential data-integrity attacks on a control system.

As mentioned in the paper, the existing schedule entropy met-
ric, which is designed to evaluate the randomness (uncertainty)
of a randomized schedule, is actually optimistic in the presence
of an attacker’s partial observations, e.g., the attacker can
observe its own execution windows. Hence, as future work, we
will focus on deriving a sound metric for quantifying schedule
uncertainty and evaluating the effectiveness of the schedule
randomization methods against attackers that try to infer the
future schedule using learning-based techniques. We will also
work on a concrete attack case where such a high-precision
schedule-inference is essential for the attacker’s success.
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