
Meeting End-to-End Deadlines Through Distributed
Local Deadline Assignments

Shengyan Hong, Thidapat Chantem, Xiaobo Sharon Hu
Department of Computer Science and Engineering

University of Notre Dame
Notre Dame, IN 46556

{shong3, tchantem, shu}@nd.edu

Abstract— In a distributed real-time system, jobs are often
executed on a number of processors and must be completed
by their end-to-end deadlines. Without considering resource
competition among different jobs on each processor, deadline
requirements may be violated. The paper introduces a distributed
approach to assigning local deadlines to the jobs on each
processor. The approach leads to improved schedulability results
by considering disparate workloads among the processors due to
competing jobs having different paths. Simulation results based
on randomly generated workloads indicate that the proposed
approach outperforms existing work in terms of both the number
of feasible task sets (between 22% and 75%) and the number of
feasible jobs (between 57% and 46%).

I. INTRODUCTION

Distributed real-time systems are widely employed in cyber-
physical applications such as vehicle control and multimedia
communication (e.g., [7], [14], [23]). Such systems typically
require that jobs be executed on a chain of processors and be
completed within some end-to-end deadlines. Resource com-
petition among the jobs on a shared processor could severely
increase job response times, potentially resulting in end-to-
end deadline misses. Therefore, it is important to properly
manage job execution patterns on each processor in order to
guarantee the timing requirements of tasks in a distributed real-
time system. Assigning job priorities locally on each processor
is an efficient way to achieve such management.

A number of recent papers have investigated the job-
priority assignment problem for distributed real-time systems.
Most of these solutions assign a local deadline for each
job executing on each processor. The local deadlines then
dictate the job priorities according to the earliest-deadline-
first (EDF) scheduling policy. Some of the local-deadline
assignment approaches follow the general idea of dividing
the end-to-end deadline of a job into segments to be used as
local deadlines by the processors that will execute the job. The
division may depend on the number of processors that the job
traverses [12], [22] or execution time distribution of the job
among the processors [3]. In another local-deadline assignment
approach [19], the local deadline of each task is assumed to
be given and the local deadline of each job is derived on-line
based on the job completion time in the preceding processors.
Since none of the above mentioned methods consider work-
loads contributed by different jobs on a processor, they cannot
guarantee that jobs on a shared processor are schedulable,

which in turn may lead to eventual end-to-end deadline misses.
To ensure the feasibility of the jobs on each processor, the
work in [13] employs the feasibility condition from [1] to
assign local deadlines to tasks on each processor in an off-
line, iterative manner. However, this approach is not only time
consuming but also assumes that the tasks on each processor
are synchronized, which can be quite pessimistic. The authors
in [20] propose a local-deadline assignment scheme aiming to
minimize processor resource requirements but this approach
focuses only on a single task.

Instead of assigning local deadlines, Jayachandran and
Abdelzaher propose to assign priorities to jobs based on the
job’s absolute end-to-end deadlines ([9], [11]). This approach
works well when the workload of each processor is relatively
low. For relatively high workloads, such an approach can be
ineffective, particularly when different jobs take different paths
of execution and workloads on processors vary significantly.

A topic closely related to the job-priority assignment prob-
lem is schedulability analysis of tasks in distributed real-
time systems as such analysis is critical for evaluating the
quality of an assignment. Some work (e.g., [16], [18]) on
this topic presented algorithms to compute the time demand
bound function of tasks scheduled by the EDF policy. Some
other work (e.g., [8], [10], [15]) proposed methods to compute
the worst-case response times for systems scheduled by the
fixed priority or EDF policy. The approach in [9], [11]
transforms the distributed real-time system schedulability test
into a uniprocessor schedulability test. It is well known that
feasibility-analysis based methods are generally time consum-
ing and not suitable for on-line use. Furthermore, the method
in [8] is for fixed priority scheduling, which may under-utilize
resources compared to EDF. The schedulability test proposed
in [9], [11] does not work well if transactions have different
execution paths and the ratios of the end-to-end deadlines to
periods for some transactions are much larger than the number
of processors along the execution paths.

In this paper, we present a distributed approach which
combines local-deadline assignment with feasibility analysis
such that the resulting deadline assignment is guaranteed to
be schedulable. Our approach formulates the local-deadline
assignment problem as a mathematical programming problem
of maximizing the minimum time slack among all the jobs
executed on each processor. In order to account for job inter-

ferences on each processor, we introduce a novel transforma-
tion of the necessary and sufficient condition proposed in [5],
[6]. Our mathematical programming formulation addresses
the shortcomings of existing work by considering resource
competition among all the jobs on a shared processor and
coordinating the local deadline distribution of a job at different
stages along the job’s execution path.

We further introduce an on-line, iterative technique to ef-
ficiently and effectively solve the mathematical programming
based local-deadline assignment problem. Our proposed algo-
rithm, with a worst-case time complexity of O(N3 ·M) (where
N and M is the total number of jobs and the total number
of processors, respectively), is guaranteed to find a feasible
solution if such a solution exists. In practice, the solution
search process requires only a few steps. Given its distributed
nature, the algorithm readily adapt to dynamic changes in job
execution times and execution paths. Furthermore, since it
only needs local execution information, the algorithm avoids
the overhead of global time synchronization. The observations
made in the optimality proofs reveal some interesting prop-
erties (such as prediction of idle-time existence in a job-set
execution) for the type of special job sets used in our algorithm
and can be applicable to similar feasibility studies.

We have conducted simulation-based studies of our al-
gorithm and compared it with two existing representative
methods, JA [9], [11] and BBW [3]. Our studies show that, for
systems where processor workloads are somewhat balanced,
our approach can find on average 75% and 22% more feasible
solutions than JA and BBW, respectively. For systems where
processor workloads vary noticeably, our approach leads to,
on average, 57% to 46% more solutions than JA and BBW,
respectively. Furthermore, for balanced workloads, JA and
BBW drop 325% and 225% more jobs on average than
our approach, respectively. For imbalanced workloads, the
averages are 89% and 379%, respectively. These results show
that our approach indeed leads to improved quality of service
for distributed real-time systems.

The rest of the paper is organized as follow. Section II
provides the system model and motivations for our work.
Section III presents our approach to solve the local-deadline
assignment problem. Experimental results are presented and
discussed in Section IV, and Section V concludes the paper.

II. PRELIMINARIES

Below, we first introduce the needed notation and schedul-
ing properties. We then give motivations for our work.

A. System Model

We consider a distributed system, where a set of real-time
tasks arrive either periodically or aperiodically and require
execution on a sequence of processors. Since our focus is
on on-line distributed deadline assignment methods, we only
consider individual task instances, i.e., jobs, without specific
assumptions about task periodicity. A job Ji is released at
time Ri, needs to be executed on Mi processors (also referred
to as Mi stages), and must be completed by its absolute

Fig. 1. A teleconferencing application consisting of video and audio
streams [4].

end-to-end deadline, Di, The segment of Ji running at stage
k (k = 1, · · · ,Mi) is denoted as Ji,k, whose worst-case
execution time is Ci,k. Each Ji,k is associated with an absolute
release time ri,k and absolute deadline di,k, both of which are
to be determined during the local-deadline assignment process.
Note that ri,1 = Ri and we assume that ri,k = di,k−1.

Similar to the execution models in [9], [11], we assume
that there is a total execution order among the processors in
the given distributed system. That is, if x < y, processor Vx

should appear before processor Vy in any job’s execution path
containing processors Vx and Vy . We refer to any processor
Vx having the execution order earlier (later) than Vy as an
upstream (downstream) processor of Vy . Processor Vx has a
set Ω(Vx) of jobs that traverse it (i.e., are executed on it). We
use Ji,k(i,x) ∈ Ω(Vx) to indicate that the k-th stage of job Ji is
executed on processor Vx. (Function k(i, x) returns the integer
denoting the stage index when Ji executes on Vx.) The above
execution models can be found in many signal/data processing
applications. For example, Figure 1 shows a teleconferencing
application presented in [4], [14]. This application consists of
video and audio stream processing, J1 and J2, where the video
stream and the audio stream have almost the same path except
that the audio stream completes its processing in the DSP
component after finishing its execution on a PC. The processor
execution order for this application can thus be represented as
V1 (disk), V2 (Sparc Workstation), V3 (FDDI Network), V4

(PC) and V5 (DSP), J1,k(1,1) = J1,1, J2,k(2,1) = J2,1, etc.
One way to meet the jobs’ end-to-end deadlines is to assign

local job deadlines such that all the jobs on every processor are
schedulable and that the local deadlines at the jobs’ last stage
are less than or equal to the respective end-to-end deadlines.
Since the execution model enforces an execution order, it is
important for upstream processors to not overuse their shares
of slacks and to leave enough time for later stages. Specifically,
we define the time slack of Ji,k as the difference between
the end-to-end deadline relative to ri,k+1 and the sum of the
execution times from stage k + 1 to stage Mi, i.e.,

si,k = Di − ri,k+1 −
Mi∑

m=k+1

Ci,m. (1)

The time slack gives information on the longest delay that a
job can endure from the current stage to the job’s final stage
without violating its end-to-end deadline. Maximizing the time

TABLE I
A MOTIVATING EXAMPLE CONTAINING TWO JOBS THAT TRAVERSE FOUR PROCESSORS

Job τ1 Job τ2 Local Deadline Assignment Response Time
Processor Execution End-to-End Execution End-to-End BBW / OLDA BBW / JA / OLDA

Name Time Deadline Time Deadline Job τ1 Job τ2 Job τ1 Job τ2
Processor V1 100 N/A 70 N/A 111 / 100 90 / 170 170 / 170 / 100 70 / 70 / 170
Processor V2 200 N/A 430 N/A 331 / 300 663 / 730 370 / 700 / 300 700 / 500 / 730
Processor V3 100 N/A 100 N/A 441 / 400 797 / 830 470 / 800 / 400 800 / 600 / 830
Processor V4 600 1100 100 930 1100 / 1100 930 / 930 1170 / 1400 / 1100 900 / 700 / 930

slack of each job on any processor gives the best opportunity
to satisfy the end-to-end deadline requirements.

We assume that EDF is used on each processor since it
is optimal in terms of meeting job deadlines for a single
processor. Each job should complete execution at the last
stage within its end-to-end deadline. However, preemptions on
processors with different workloads along the job’s execution
path may cause some jobs to have long response times at
some stages and eventually miss their end-to-end deadlines.
Our problem, then, is to minimize the response times of jobs
at each stage by intelligently assigning local deadlines to them.
A necessary and sufficient condition for schedulability under
EDF on a uniprocessor is restated below with proper notation.

Theorem 1: [5], [6] Job set Ω(Vx) can be scheduled by EDF
if and only if ∀Ji,k(i,x), Jj,k(j,x) ∈ Ω(Vx), ri,k(i,x) ≤ dj,k(j,x),

dj,k(j,x) − ri,k(i,x) ≥
∑

Jr,k(r,x),
rr,k(r,x)≥ri,k(i,x),
dr,k(r,x)≤dj,k(j,x)

Cr,k(r,x). (2)

B. Motivations

We use a simple distributed real-time system to illustrate
the deficiencies of existing approaches in terms of satisfying
the real-time requirements. The example application contains
2 jobs; their computation times and end-to-end deadlines are
shown from columns 2 to 5 in Table I. Both jobs, J1 and
J2, are released at time 0 onto processor V1, and traverse
processors V1, V2, V3 and V4 sequentially.

We consider two representative priority assignment meth-
ods: JA [9], [11] and BBW [3]. JA, introduced by Jayachan-
dran and Abdelzaher, belongs to the job-level fixed priority
based approaches. It assigns a priority to a job according
to its absolute end-to-end deadline and this priority is fixed
across all processors executing this job [9], [11]. Although
this priority assignment is extremely efficient and incorporates
the real-time requirement of each individual job, it does
not take into account the fact that different jobs may have
different execution paths and some processors may have higher
utilization than others. Hence, it may cause a job with a small
time slack to be preempted by another job with a large time
slack on some processors, and eventually result in deadline
misses. BBW, proposed by Buttazzo, Bini and Wu, is an end-
to-end deadline partitioning based method. It assigns local
deadlines to the job on each processor by partitioning its end-
to-end deadline in proportion to the job’s executions times at
different stages [3]. The disadvantage of BBW is that some
jobs may be preempted on an upstream processor for a long

time due to its long local deadline, and then fail to catch up
in time to meet their end-to-end deadlines later.

In the motivating example, the local deadlines assigned by
BBW (and the resultant job response times) at each processor
are indicated by the first value in columns 6 and 7 (and the
first value in columns 8 and 9) of Table I. The resultant job
response times at each processor obtained by JA are shown
in the second value in columns 8 and 9. For example, under
BBW, the local absolute deadline of job J1 on processor V1

equals 111 time units and the response time is 170 time
units. With JA, job J1 completes its execution at stage 4
(the last stage) at time 1400, which is much longer than
its end-to-end deadline. BBW performs a little better than
JA in reducing the response time of job J1, but still causes
J1 to miss its end-to-end deadline. Since JA ignores the
workload of each job on different processors along the job’s
execution path, it may assign a low priority to a job with
large computation times in the remaining stages and cause
the job to miss its end-to-end deadline. On the other hand,
BBW ignores the resource competition among different jobs
on a shared processor and causes both the local and end-to-
end deadlines to be missed. If an alternative local deadline
assignment method can consider both the workloads along a
job’s execution path and resource competition among different
jobs on a shared processor, adopting such a method may result
in meeting the deadline requirements of both jobs J1 and J2.
We will present one such method, OLDA (On-line Distributed
Algorithm), in next section. The new local deadlines obtained
by OLDA are represented by the second values in columns
6 and 7 and the resultant response times are as given by the
third values in columns 8 and 9 in Table I. It is clear that
this local deadline assignment is able to meet the end-to-end
deadlines of both jobs.

III. OUR APPROACH

As shown in the last section, the probability that tasks
meet their end-to-end deadlines can be greatly increased if
appropriate local deadlines are assigned to the jobs on different
processors. Although it is possible to accomplish local-job
deadline assignment in a global manner using mathematical
programming or dynamic programming, such approaches incur
high computation overhead and are not suitable for on-line use.

We adopt a distributed, on-line approach to determining
local job deadlines on each processor. On a high level, our
approach works as follows. Every time a new job arrives at
processor Vx, new deadlines are assigned for both the newly
arrived job and current jobs (which may be partially executed)
on Vx. If a feasible deadline assignment is not found, the job

with the maximum accumulative unfinished execution time
in the remaining stages (among all the jobs in Vx) will be
eliminated from further processing.

The key to make the above generic distributed approach
effective is the design of an appropriate local deadline assign-
ment algorithm to be run on each processor. Below, we focus
our discussions on how to achieve such a design. We first
present a mathematical programming based formulation for
local deadline assignment. Although the resultant problem can
be solved directly by a solver, the time overhead can be rather
high for on-line use. Based on the mathematical programming
formulation, we introduce a efficient and optimal algorithm
for solving the local deadline assignment problem.

A. Mathematical Programming Formulation

In order to ensure that a local deadline assignment lead
to a feasible schedule on a processor, a deadline assignment
approach should consider resource competition among dif-
ferent jobs on that processor. Furthermore, such as approach
should leave as much time slack (see the definition in (1)) as
possible for later stages to help satisfy the end-to-end deadline
requirements. More specifically, our goal is to determine the
local deadline di,k for job Ji,k such that the end-to-end
deadline of Ji is met, the job set Ω(Vx) on processor Vx is
schedulable, and (1) is maximized. We capture the problem as
a constrained optimization problem given below:

max: min
Ji,k(i,x)∈Ω(Vx)



Di − di,k(i,x) −

Mi∑

m=k(i,x)+1

Ci,m





(3)
s.t. ri,k(i,x) + Ci,k(i,x) ≤ di,k(i,x) ≤ Di−

Mi∑

m=k(i,x)+1

Ci,m, ∀Ji,k(i,x) ∈ Ω(Vx) (4)

di,k(i,x) − rj,k(j,x) ≥
∑

Jh,k(h,x)∈Ω(Vx),
rh,k(h,x)≥rj,k(j,x),
dh,k(h,x)≤di,k(i,x)

Ch,k(h,x),

∀Jj,k(j,x), Ji,k(i,x) ∈ Ω(Vx). (5)

Since it is ambiguous to require maximizing the time slacks
of all jobs on a processor, we resort to the objective of maxi-
mizing the minimum time slack among all the jobs executed
on Vx (see (3)). Constraints (4)–(5) are used to guarantee
schedulability on each processor. Specifically, constraint (4)
bounds the local deadline of jobs execution on Vx by the
earliest completion time of the job (left side of (4)) and the
latest start time of the immediate next stage (right side of (4)).
Constraint (5) is simply a restatement of (2).

An astute reader would notice that the above constraint
optimization problem formulation cannot be straightforwardly
solved by a mathematical programming solver. This is because
the actual terms to be included in the summation on the right
hand side of constraint (5) depend on local deadlines which are
themselves decision variables. To overcome this challenge, we

introduce an observation in the following lemma, which can
be used to convert constraint (5) to a form readily solvable by
a mathematical programming solver (The proof for the lemma
can be found in the appendix). The essence of the observation
is that the EDF schedulability of a job set can be checked by
examining certain behavior of all the job subsets in the job
set. This observation also plays a key role in developing the
efficient algorithm to be presented later.

Lemma 1: Given job set Ω(Vx) to be executed on processor
Vx according to the EDF policy, let ω(Vx) represent any subset
of Ω(Vx). Ω(Vx) is schedulable if and only if

max
Ji,k(i,x)∈ω(Vx)

{di,k(i,x)} − min
Ji,k(i,x)∈ω(Vx)

{ri,k(i,x)} ≥
∑

Ji,k(i,x)∈ω(Vx)

Ci,k(i,x), ∀ω(Vx) ⊆ Ω(Vx). (6)

Based on Lemma 1, we can substitute constraint (5) in
our optimization problem with constraint (6). In this new
constraint, the number of terms in the max function only
depends on the corresponding job subset. Therefore, the re-
sulting problem specified by (3), together with (4) and (6),
can be solved by a mathematical programming solver. We will
discuss the use of one such solver in Section IV.

B. On-Line Distributed Algorithm (OLDA)

In this section, we present OLDA, our local deadline as-
signment algorithm, which exactly and efficiently solves the
optimization problem given in (3), (4) and (6). There are
multiple challenges in designing OLDA. The most obvious
difficulty is how to avoid checking the combinatorial number
of subsets of Ω(Vx) in constraint (6). Another challenge is how
to maximize the objective function in (3) while ensuring job
schedulability and meeting all end-to-end deadlines. Below,
we discuss how our proposed algorithm overcomes these
challenges, and describe the algorithm in detail along with
some theoretical foundations behind it. Unless explicitly noted,
the deadline of a job in this section always means the local
deadline of the job on the processor under consideration.

One key idea in OLDA is to construct a unique subset
for a given job set Ω(Vx). Using this job subset, OLDA can
determine the local deadline of at least one job among all the
jobs in Ω(Vx) such that this local deadline is guaranteed to
belong to an optimal solution for the problem given in (3), (4)
and (6). We refer to this unique job subset of Ω(Vx) as the
base subset of Ω(Vx) and it has the following property.

Property 1: If ω∗(Vx) is a base subset of Ω(Vx), then

d∗,k(∗,x) = min
Ji,k(i,x)∈ω∗(Vx)

{ri,k(i,x)}+
∑

Ji,k(i,x)∈ω∗(Vx)

Ci,k(i,x) ≥ min
Ji,k(i,x)∈ω(Vx)

{ri,k(i,x)}

+
∑

Ji,k(i,x)∈ω(Vx)

Ci,k(i,x), ∀ω(Vx) ⊆ Ω(Vx).

For a given base subset, determining which job to assign a
deadline and what value the deadline should have constitutes
another key idea in OLDA. Recall that our optimization goal

Algorithm 1 OLDA(Ω(Vx))
1: Ω(Vx) = Sort Non Dec Release T ime(Ω(Vx))
2: Upper Bound = Comp Local Deadline UB(Ω(Vx))

//Compute the upper bound on local deadline of each job
in Ω(Vx)

3: while (Ω(Vx) 6= ∅) do
4: ω(Vx) = Ω(Vx)
5: ω∗(Vx) = Ω(Vx)
6: Max Deadline = 0
7: while (ω(Vx) 6= ∅) do
8: Temp Deadline = minJi,k(i,x)∈ω(Vx){ri,k(i,x)}

+
∑

Ji,k(i,x)∈ω(Vx) Ci,k(i,x)

9: if (Max Deadline ≤ Temp Deadline) then
10: Max Deadline = Temp Deadline
11: ω∗(Vx) = ω(Vx)
12: end if
13: ω(Vx) = Remove Earliest Released Job(ω(Vx))

//Remove the job with the earliest release time
14: end while
15: Max upper bound = 0
16: for (each Ji,k(i,x) ∈ ω∗(Vx)) do
17: if (Upper bound[Ji,k(i,x)] > Max upper bound)

then
18: Max upper bound = Upper bound[Ji,k(i,x)]
19: J∗,k(∗,x) = Ji,k(i,x)

20: end if
21: end for
22: if (Max upper bound < Max Deadline) then
23: Drop Selected Job(Ω(Vx)) //Drop the job from

Ω(Vx), which has the maximum unfinished execution
times at the remaining stages

24: return ∅
25: else
26: d∗,k(∗,x) = Max Deadline
27: Ω(Vx) = Ω(Vx)− J∗,k(∗,x)

28: end if
29: end while
30: return {di,k(i,x)}

is to maximize the job time slacks. Hence, we select this job
based on the end-to-end deadlines and remaining execution
times of all the jobs in the base set. We refer to the selected
job as the base job and it has the following property.

Property 2: If J∗,k(∗,x) ∈ ω∗(Vx) is a base job for job set
Ω(Vx), then

D∗ −
M∗∑

m=k(∗,x)+1

C∗,m ≥ Di −
Mi∑

m=k(i,x)+1

Ci,m

∀Ji,k(i,x) ∈ ω∗(Vx),
Based on the above two properties, for the remaining jobs in
the given job set, OLDA iteratively constructs base subsets
and assigns local deadlines to the corresponding base jobs.

Algorithm 1 summarizes the main steps in OLDA. (Recall
that this algorithm is used by each processor in a distributed

manner, and the pseudocode is given for processor Vx.) OLDA
starts by sorting the given jobs in a non-decreasing order of
their release times (Line 1) and computing the upper bound
on the local deadline for each job (Line 2). The upper bound
on the local deadline of a job is the value beyond which
the job will definitely miss its end-to-end deadline. Note
that this is simply the values used in Property 2 for the
base job. The algorithm enters the main loop spanning from
Line 3 to Line 29. The first part in the main loop (Line 4
to Line 14) constructs the base subset for the given job set
according to Property 1 and computes the desired deadline
value (Max Deadline). The second part of the main loop
(Line 15 to Line 21) makes use of Property 2 to find the base
job in the base subset. If the desired deadline value is smaller
than or equal to the local deadline upper bound of the base job
(as shown in Line 2), the third part of the main loop assigns
this value to the base job (denoted by d∗,k(∗,x)) as its local
deadline (Line 26), removes J∗,k(∗,x) from Ω(Vx) (Line 27),
and repeats the process. In the case where the desired deadline
value is larger than the upper bound on the local deadline of
the base job, the job with the largest unfinished execution times
at the remaining stages is removed from the original set Ω(Vx)
and OLDA will restart from this new job set.

It is worth noting that OLDA only requires information
that is local to processor Vx (such as job release times) and
information that is known upon a job’s release (such as the
path of jobs and the upper bound on the local absolute deadline
of each job. The information that becomes available upon
jobs’ releases can be relayed from an upstream processor to a
downstream processor. (This is possible since there is a total
execution order among the processors.) Therefore, OLDA does
not require global time synchronization.

We claim that OLDA solves the optimization problem given
by (3), (4) and (6). That is, if there exists a solution to the
problem, OLDA always find it. Furthermore, if there is no
feasible solution to the problem, OLDA always identifies this
case. To support our claim, we first show that the local deadline
assignment made by OLDA (when no jobs are dropped)
satisfies the constraints in (4) and (6). This is given in the
following two lemmas. For readability, we have put all the
proofs in this section (except for the proof for Lemma 3, which
is straightforward) in the appendix.

Lemma 2: Given job set Ω(Vx), let d∗i,k(i,x) be the local
deadline assigned by OLDA to Ji,k(i,x) ∈ Ω(Vx). Then

ri,k(i,x) + Ci,k(i,x) ≤ d∗i,k(i,x) ≤ Di −
Mi∑

m=k(i,x)+1

Ci,m, ∀Ji,k(i,x) ∈ Ω(Vx) (7)

Lemma 3: Given job set Ω(Vx), let d∗i,k(i,x) be the local
deadline assigned by OLDA to Ji,k(i,x) ∈ Ω(Vx). We have

max
Ji,k(i,x)∈ω(Vx)

{d∗i,k(i,x)} − min
Ji,k(i,x)∈ω(Vx)

{ri,k(i,x)} ≥
∑

Ji,k(i,x)∈ω(Vx)

Ci,k(i,x), ∀ω(Vx) ⊆ Ω(Vx). (8)

Proving that the local deadline assignment made by OLDA
indeed optimizes the objective function in (3) requires an-
alyzing the relationship among the jobs’ time slacks. Since
OLDA assigns job local deadlines by identifying the base job
in each base subset, a special property that the base subset
possesses greatly simplifies the analysis process. Lemma 4
below summarizes this property.

Lemma 4: Let ω∗(Vx) be a base subset of job set Ω(Vx)
and r∗ = minJi,k(i,x)∈ω∗(Vx){ri,k(i,x)}. Under the work-
conserving EDF policy, processor Vx never idles once it
starts to execute the jobs in ω∗(Vx) at r∗ until it com-
pletes all the jobs in ω∗(Vx). In addition, the busy interval
corresponding to executing the jobs in ω(Vx) is [r∗, r∗ +∑

Ji,k(i,x)∈ω∗(Vx) Ci,k(i,x)].
Based on Lemma 4, the optimality of the deadline assign-

ment made by OLDA can be proved. This conclusion is stated
in the following lemma.

Lemma 5: Given job set Ω(Vx), let d∗i,k(i,x) be the local
deadline assigned to each Ji,k(i,x) ∈ Ω(Vx) by OLDA. Then
d∗i,k(i,x) maximizes the function given in (3).

To show that OLDA always identifies the case where there
is no feasible solution to the optimization problem, we observe
that OLDA always finds a local deadline assignment without
dropping any jobs if there exists a feasible solution to the
optimization problem. This is stated in the following lemma.

Lemma 6: Given job set Ω(Vx), if there exists di,k(i,x) for
every Ji,k(i,x) ∈ Ω(Vx) that satisfies (4) and (6), OLDA always
finds a feasible local deadline assignment for every Ji,k(i,x) ∈
Ω(Vx).

Based on Lemmas 2, 3, 5, and 6, we have the following
theorem.

Theorem 2: In O(|Ω(Vx)|3) time, OLDA returns a set of
local deadlines if and only if there exists a solution to the
optimization problem specified in (4), (6), and (3). Further-
more, the returned set of local deadlines is a solution to the
optimization problem.

We omit the actual proof for Theorem 2 and only dis-
cuss its time complexity. The time complexity of OLDA
is dominated by the main while loop starting at Line 3.
(Refer to Algorithm 1.) Inside the while loop, the most
time consuming operations appears in the inner while loop
from Line 7 to Line 14. Every time OLDA computes the
local absolute deadline of a job, it considers |Ω(Vx)| number
of subsets. Furthermore, the number of jobs in Ω(Vx) is
always reduced by 1 in each iteration. Hence, OLDA considers
|Ω(Vx)|·|Ω(Vx)+1|

2 number of subsets of Ω(Vx) in total, instead
of a combinatorial number of them. In addition, it takes
|ω∗(Vx)| iterations to compute minJi,k(i,x)∈ω∗(Vx){ri,k(i,x)}+∑

Ji,k(i,x)∈ω∗(Vx) Ci,k(i,x) for each subset ω∗(Vx). Therefore,
the time complexity of OLDA when considering a set of jobs
running on processor Vx is O(|Ω(Vx)|3).

IV. EXPERIMENTAL RESULTS

In this section, we discuss the the performance and effi-
ciency of our proposed algorithm using randomly generated

job sets. We also compare our algorithm with a job-level
fixed priority based method, JA in [9], [11], and an end-to-end
deadline partitioning method, BBW in [3]. We further illustrate
the use of our algorithm in a real-world application. In the
rest of the section, we first describe our simulation setup, then
summarize simulation results based on the randomly generated
job sets, and finally present a case study.

A. Simulation Setup

To evaluate our proposed algorithm (Section III-B), we used
two different benchmarks consisting of randomly generated
task sets in order to evaluate two different processor loading
scenarios. Each benchmark contains 100 randomly generated
task sets of 50 tasks each for 10 different system utilization
levels (400%, 425%, . . . , 625%), for a total of 1,000 task sets.
There are 8 processors in total and each task randomly passes
through 4 to 6 stages. Task periods ranged from 1,000 to
10,000 time units. We used the UUnifast algorithm [2] to
generate the total execution time of each task. After the call to
the UUnifast algorithm [2], and based on the actual number of
stages Mi for each task τi, the set of processors used by task
τi is randomly assigned, along with the execution time Ci,k

at each stage k. Each task set is generated with the guarantee
that the total utilization at each processor is no larger than 1.

For the first benchmark, the execution time of a job at each
stage is randomly distributed. As a result, processor loads tend
to be balanced. As a stress test, the second benchmark rep-
resents a somewhat imbalanced workload distribution among
the processors. It is generated in such a way that the first
few stages as well as the last few stages are more heavily
loaded. This benchmark is designed to test the usefulness of
considering severe resource competition among different tasks
on a given processor in meeting end-to-end deadlines.

To ensure a fair comparison for the three algorithms un-
der consideration, we made some modifications to JA and
BBW. The original version of both JA and BBW require
global time synchronization. We removed this requirement
by implementing JA and BBW on-line on each processor.
All algorithms were implemented in C++ and experimental
data were collected on two quad-core 2.3 GHz AMD Opteron
processors with Red Hat Linux 4.1.2-50.

B. Results for Randomly Generated Benchmarks

We discuss the following comparisons in this section. First,
we compare the number of task sets in which all jobs meet
their end-to-end deadlines using OLDA, BBW and JA. Second,
for the task sets where at least one end-to-end deadline is
missed or a feasible local-deadline assignment is not found,
we compare the job drop rates (the ratio between the number of
jobs dropped and the number of jobs released in the system) of
the algorithms. Third, we assess the time overhead of OLDA.

In the first experiment, we compare the percentage of
feasible task sets (over the 100 task sets at each utilization
level) found by our algorithm, as opposed to those found by
JA and BBW for both the balanced and imbalanced workload
scenarios. The results are summarized in Figures 2 and 3,

0

10

20

30

40

50

60

70

80

90

100

400 425 450 475 500 525 550 575 600 625

Utilization Level (%)

F
e
a

si
b

le
 S

o
lu

ti
o

n
s

F
o

u
n

d
 (

%
)

BBW JA OLDA

Fig. 2. Comparison of OLDA, JA and BBW in terms of percentage of
feasible task sets found for balanced workloads.

respectively. It is clear from the plots that OLDA can find
far more feasible sets than the other methods. Specifically,
for balanced workloads, OLDA leads to 75% and 22% on
average (and up to 2,300% and 134%) more feasible task sets
than BBW and JA, respectively. For imbalanced workloads,
OLDA results in 57% and 46% on average (and up to 184%
and 650%) more feasible task sets than BBW and JA, respec-
tively. Observe that OLDA performs much better than existing
techniques at high utilization levels where there are more jobs
in the system. We want to point out that sometimes OLDA
may not be able to find a feasible solution even though such
solutions indeed exists, since OLDA finds local job deadlines
for each processor independently instead of using a time-
consuming global approach. However, for balanced workloads,
OLDA can find on average 98% and 99% of the feasible
task sets found by BBW and JA, respectively. For imbalanced
workloads, OLDA can find on average 88% and 99% of the
feasible task sets found by BBW and JA, respectively. These
results demonstrate that OLDA not only finds more feasible
task sets than BBW and JA, but also solves most of the
problems that BBW and JA solve.

In the second experiment, we compare the average job drop
rates of infeasible task sets when using different algorithms

0

10

20

30

40

50

60

70

80

90

100

400 425 450 475 500 525 550 575 600 625

Utilization Level (%)

F
e
a
si

b
le

 S
o
lu

ti
o
n

s
F

o
u

n
d

 (
%

)

BBW JA OLDA

Fig. 3. Comparison of OLDA, JA and BBW in terms of percentage of
feasible task sets found for imbalanced workloads.

0

0.05

0.1

0.15

0.2

0.25

0.3

400 425 450 475 500 525 550 575 600 625

Utilization Level (%)

A
v

er
a

g
e

D
ro

p
 R

a
te

 (
%

)

BBW JA OLDA

Fig. 4. Comparison of OLDA, JA and BBW in terms of average drop rate
for balanced workloads.

for both balanced and imbalanced workloads. The drop rate
of an infeasible task set is computed as the ratio between the
number of drop jobs and the total number of jobs released to
the system. (A job is dropped either because no local deadline
assignment can be found for the job set on a processor by
OLDA or the job’s end-to-end deadline is missed using BBW
and JA.) The job drop rates for the three algorithms for the
balanced and imbalanced workloads are shown in Figures 4
and 5, respectively. It is clear from the plots that OLDA drops
much fewer jobs than the two other methods. For balanced
workloads, BBW and JA drop 325% and 225% more jobs on
average than OLDA, respectively. For imbalanced workloads,
the averages are 89% and 379%, respectively.

To examine whether OLDA is suitable for on-line local
deadline assignments, we compare the number of cycles
required by OLDA against those of JA and BBW. For the
benchmark with balanced workloads, OLDA requires on av-
erage 3.64 and 23.30 times more cycles per task set (with 50
tasks) than BBW and JA, respectively. For the benchmark with
imbalanced workloads, which is more difficult to solve, OLDA
needs about 4.83 and 30.79 times more cycles per task set
than BBW and JA, respectively. Although OLDA has a longer
running time than both BBW and JA, the average number of

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

400 425 450 475 500 525 550 575 600 625

Utilization Level (%)

A
v

er
a

g
e

D
ro

p
 R

a
te

 (
%

)

BBW JA OLDA

Fig. 5. Comparison of OLDA, JA and BBW in terms of average drop rate
for imbalanced workloads.

TABLE II
A CASE STUDY OF A FLIGHT CONTROL SYSTEM

Trans. Execution Time End2End Dropped Job Num. End2End Dropped Job Num.
Name AH NV FC BS FG AP SV PF Period Deadline OLDA / JA / BBW Period Deadline OLDA / JA / BBW
FCP 0 0 15 29 10 15 0 10 500 450 0 / 0 / 0 120 120 0 / 0 / 0
PAA 10 0 0 16 15 20 10 0 100 100 0 / 0 / 0 72 72 0 / 180 / 0
NIP 0 10 0 14 20 0 0 0 250 200 0 / 0 / 0 75 75 0 / 0 / 30

cycles required to process a job is about 315 and 371 cycles for
the balanced workload and imbalanced workload, respectively.
(Note that the time overhead for JA and BBW is negligible.)
Such runtime overhead is tolerable in systems where real-
time jobs are computationally demanding, e.g. in avionics and
automotive control applications [9], [17] where jobs usually
require hundreds of thousands or millions of cycles to execute.

To see how well OLDA fares compared with a mathematical
programming solver, we randomly selected a few benchmarks
and compared the solutions found by OLDA to the ones
found by Loqo [21], a system for solving smooth constrained
optimization problems. The comparisons support our earlier
claim that OLDA always find an optimal solution to the
problem stated in (4), (6), and (3) whenever a feasible solution
exists. Furthermore, the execution time of OLDA is about
10,000× shorter than Loqo.

C. Case Study of a Flight Control System

Using a large number of randomly generated task sets,
we have shown that OLDA outperforms existing methods.
However, it is important to quantify the performance of OLDA
under a real-world workload. We use a simplified flight control
system, similar to the one in [9], to illustrate how OLDA
adapts to changing requirements on-line to guarantee the
end-to-end deadlines of jobs in an actual distributed real-
time system. The system contains 3 periodic tasks and 8
heterogeneous processors. Flight control processing (FCP) task
reads input commands from Flight Control Processor (FC),
processes them on Flight Guidance System (FG) and Auto-
Pilot (AP) sequentially, and displays the results on Primary
Flight Display (PF). Pitch adjustment actuation (PAA) task
receives periodic sensor readings from Attitude and Heading
Reference System (AH), processes the information on FG
and AP sequentially, and sends control signals to Elevator
Servo (SV). Navigation information processing (NIP) task
periodically receives sensor readings from Navigation Radio
(NV) and processes them on Flight Guidance System (FG). All
input commands and sensor readings reach FG through a Bus
(BS). The task execution times on the processor are given in
columns 2 to 10 and the task end-to-end deadlines in column
11 of Table II, where the time values are in milliseconds.

We simulated the application for the time interval
[0, 54000ms] when applying OLDA, JA and BBW, and found
that no job misses its end-to-end deadline. Now, assume that at
some time interval, the airplane encounters some emergency,
such as air turbulence or a mechanical malfunction. For
security, the periods and end-to-end deadlines of the three tasks
are decreased, as shown in columns 13 and 14 of Table II. If
the previous local deadline assignments generated by BBW
are reused for the tasks, 60 jobs out of the 1920 released

jobs will miss their end-to-end deadlines. (Note that neither
JA nor OLDA can reuse local job deadlines when task periods
change.) Suppose we apply JA and BBW in response to the
workload and deadline changes, 180 and 30 jobs are dropped
from the PAA and NIP tasks, respectively (see the second and
third numbers in column 15 of Table II). In contrast, applying
OLDA leads to all jobs meeting their end-to-end deadlines.

V. SUMMARY AND FUTURE WORK

We presented a novel distributed local deadline assignment
approach to guarantee task end-to-end deadlines in a dis-
tributed real-time system. Our algorithm has the following
features: (i) it is guaranteed to find an optimal solution if one
exists, (ii) it is effective even when different tasks have differ-
ent paths and workloads on different processors are dissimilar,
(iii) it avoids the overhead of global time synchronization
and is efficient enough for online use, and (iv) it can adapt
to dynamic changes in the system. Our future plans include
generalizing the proposed algorithm to handle situations where
processors have no execution order and implementing the
algorithm in a real-time operating system.

VI. ACKNOWLEDGEMENT

This work is supported in part by NSF under grants CNS-
0931195 and CCF-0702761.

APPENDIX

Proof for Lemma 1: We first prove the “if” part. Assume that
∀ω(Vx) ⊆ Ω(Vx), constraint (6) holds, i.e.,

max
Jh,k(h,x)∈ω(Vx)

{dh,k(h,x)} − min
Jh,k(h,x)∈ω(Vx)

{rh,k(h,x)} ≥
∑

Jh,k(h,x)∈ω(Vx)

Ch,k(h,x), ∀ω(Vx) ⊆ Ω(Vx). (9)

Then for each pair of ri,k(i,x) and dj,k(j,x) with
Ji,k(i,x), Jj,k(j,x) ∈ Ω(Vx), there must exist some job
subset ω(Vx) in Ω(Vx) such that

ω(Vx) = {Jh,k(h,x)|rh,k(h,x) ≥ ri,k(i,x), dh,k(h,x) ≤ dj,k(j,x)}.
Thus, ∀Ji,k(i,x), Jj,k(j,x) ∈ Ω(Vx), we have

max
Jh,k(h,x)∈ω(Vx)

{dh,k(h,x)} − min
Jh,k(h,x)∈ω(Vx)

{rh,k(h,x)}

= dj,k(j,x) − ri,k(i,x) ≥
∑

Jh,k(h,x)∈ω(Vx)

Ch,k(h,x)

=
∑

Jh,k(h,x)∈Ω(Vx),
rh,k(h,x)≥rj,k(j,x),
dh,k(h,x)≤di,k(i,x)

Ch,k(h,x).

By Theorem 1, job set Ω(Vx) is schedulable.
Next, we prove the “only if” part. Assume that the job

set Ω(Vx) is schedulable on Vx. According to Theorem 1,
∀Ji′,k(i′,x), Jj′,k(j′,x) ∈ Ω(Vx), ri′,k(i′,x) ≤ dj′,k(j′,x), and

dj′,k(j′,x) − ri′,k(i′,x) ≥
∑

Jh,k(h,x),
rh,k(h,x)≥ri′,k(i′,x),

dh,k(h,x)≤dj′,k(j′,x)

Ch,k(h,x). (10)

Given any job subset ω(Vx), let maxJi,k(i,x)∈ω(Vx){di,k(i,x)}
= dj′,k(j′,x) and minJi,k(i,x)∈ω(Vx){ri,k(i,x)} = ri′,k(i′,x). We
have

max
Ji,k(i,x)∈ω(Vx)

{di,k(i,x)} − min
Ji,k(i,x)∈ω(Vx)

{ri,k(i,x)}

≥
∑

Jh,k(h,x),
rh,k(h,x)≥ri′,k(i′,x),

dh,k(h,x)≤dj′,k(j′,x)

Ch,k(h,x) ≥
∑

Ji,k(i,x)∈ω(Vx)

Ci,k(i,x).

Therefore, constraint (6) holds true. ¤
Proof for Lemma 2: First, we prove that ri,k(i,x) +
Ci,k(i,x) ≤ d∗i,k(i,x) for any Ji,k(i,x) in any solution found
by OLDA. Let dω

i,k(i,x) = minJi,k(i,x)∈ω(Vx){ri,k(i,x)} +∑
Ji,k(i,x)∈ω(Vx) Ci,k(i,x) for any ω(Vx) ⊆ Ω(Vx). According

to Lines 4–14 of Algorithm 1, OLDA selects the job subset
ω∗(Vx), which has the maximum dω

i,k(i,x) among all the
subsets of Ω(Vx), and assigns this value to job J∗,k(∗,x) as
its local deadline. That is,

d∗,k(∗,x) = dω∗
i,k(i,x) ≥ dω

i,k(i,x)∀ω(Vx) ⊆ Ω(Vx). (11)

Suppose that d∗,k(∗,x) < r∗,k(∗,x) + C∗,k(∗,x). In such a case,
we can find a job subset ω′(Vx) containing {J∗,k(∗,x)} such
that dω′

i,k(i,x) > dω∗
i,k(i,x). This contradicts the condition in (11).

Next, we prove that d∗i,k(i,x) ≤ Di−
∑Mi

m=k(i,x)+1 Ci,m for
any Ji,k(i,x) in the solution found by OLDA. Suppose there is
a job Jp,k(p,x) where dp,k(p,x) > Dp−

∑Mp

m=k(p,x)+1 Cp,m. In
such a case, OLDA exits without returning a solution, which
contradicts the assumption that OLDA returns a solution.
Therefore, the solution returned by OLDA satisfies (4). ¤
Proof for Lemma 4: We prove the lemma by contradiction.
Since ω∗(Vx) is the base subset of Ω(Vx), we have ∀ω(Vx) ⊆
Ω(Vx),

r∗ +
∑

Ji,k(i,x)∈ω∗(Vx)

Ci,k(i,x) ≥

min
Ji,k(i,x)∈ω(Vx)

{ri,k(i,x)}+
∑

Ji,k(i,x)∈ω(Vx)

Ci,k(i,x). (12)

Intuitively, the earliest start time of the first job in ω∗(Vx)
is simply r∗, and the earliest completion time of the last
job in ω∗(Vx) (denoted by f∗) satisfies f∗ = r∗ +∑

Ji,k(i,x)∈ω∗(Vx) Ci,k(i,x).
Suppose there are multiple idle time intervals inside [r∗, f∗]

when the jobs in ω∗(Vx) are executed. Let Tidle,sum be the

total duration of the idle times. Thus, the completion time of
the last job in ω∗(Vx) can be expressed as

Tcomplete,ω∗(Vx) = f∗ + Tidle,sum. (13)

Let [tstart, tend] be the latest idle time interval among all the
idle time intervals. Under the work-conserving EDF policy, an
idle interval means that no job is ready to be executed during
the interval. In other words, tend coincides with the release
time rq,k(q,x) of some job Jq,k(q,x). The completion time of
ω∗(Vx) can also be expressed as,

Tcomplete,ω∗(Vx) = rq,k(q,x) +
∑

Ji,k(i,x)∈ω∗(Vx)
ri,k(i,x)≥rq,k(q,x)

Ci,k(i,x). (14)

This implies that,

rq,k(q,x)+
∑

Ji,k(i,x)∈ω∗(Vx)
ri,k(i,x)≥rq,k(q,x)

Ci,k(i,x) > r∗+
∑

Ji,k(i,x)∈ω∗(Vx)

Ci,k(i,x).

This contradicts (12) stated earlier.
Since there is no idle time when executing the jobs

in ω∗(Vx), and since the start time of the first job and
the total execution time of the jobs in ω∗(Vx) are r∗

and
∑

Ji,k(i,x)∈ω∗(Vx) Ci,k(i,x), respectively, the completion
time of the last job in ω∗(Vx) is then equal to r∗ +∑

Ji,k(i,x)∈ω∗(Vx) Ci,k(i,x). It follows that the busy interval is
[r∗, r∗ +

∑
Ji,k(i,x)∈ω∗(Vx) Ci,k(i,x)]. ¤

Proof for Lemma 5: Suppose there exists an optimal set of
local deadlines {d+

i,k(i,x)} that is different from the solution
{d∗i,k(i,x)} returned by OLDA. Then, there exists at least one
job Ji,k(i,x) whose d+

i,k(i,x) is different from d∗i,k(i,x). Our goal
is to show that such differences in local deadline assignments
do not affect the value of the objective function in (3).

Let the jobs in Ω(Vx) be examined in the order of the
sequence in which a job obtains its local absolute deadline in
OLDA. Suppose job Jp,k(p,x) is the first job that has different
deadlines d+

p,k(p,x) and d∗p,k(p,x) in solutions {d+
i,k(i,x)} and

{d∗i,k(i,x)}, respectively. According to Lemma 4, d∗p,k(p,x) is
the completion time of the base job in base subset ω∗(Vx) and
is equal to r∗ +

∑
Ji,k(i,x)∈ω∗(Vx) Ci,k(i,x). Hence, dp,k(p,x) is

the longest absolute local deadline of the jobs in ω∗(Vx) for
{d∗i,k(i,x)}. Assume that in {d+

i,k(i,x)}, the job Jq,k(q,x) has the
longest absolute local deadline among the jobs in ω∗(Vx). We
consider the following scenarios: p = q and p 6= q.
Case 1 (p = q) : Recall that dp,k(p,x) = r∗ +∑

Ji,k(i,x)∈ω∗(Vx) Ci,k(i,x). It is trivial to verify that d+
q,k(q,x) ≥

d∗p,k(p,x). Hence, we have S∗p,k(p,x) ≥ S+
q,k(q,x), and the

objective function of the OLDA’s solution is larger than or
equal to that of J+

i,k(i,x).
Case 2 (p 6= q) : In this case, we first prove that S+

p,k ≥ S+
q,k

and S+
p,k does not influence the value of the objective function

minτi,k(i,x)∈ω+(Vx){S+
i,k} directly. Next, we prove that S∗p,k ≥

S+
q,k and S∗q,k ≥ S+

q,k, which leads to that the value of the
objective function obtained by OLDA is larger than or equal
to that of the assumed optimal solution.

Since d+
q,k(q,x) ≥ d+

p,k(p,x), and Dp−
∑Mp

m=k(p,x)+1 Cp,m ≥
Dq −

∑Mq

m=k(q,x)+1 Cq,m according to Line 16– 21 of Algo-
rithm 1, we have S+

p,k ≥ S+
q,k ≥ minJi,k(i,x)∈ω∗(Vx){S+

i,k}.
Therefore, S+

p,k does not influence the value of the objective
function directly. In addition, since d+

q,k(q,x) ≥ d∗p,k(p,x), and

Dp−
∑Mp

m=k(p,x)+1 Cp,m ≥ Dq−
∑Mq

m=k(q,x)+1 Cq,m, we have
S∗p,k ≥ S+

q,k. Similarly, since d∗q,k ≤ d∗p,k and d∗p,k ≤ d+
q,k,

we have S∗q,k ≥ S+
q,k. As a result, the value of the objective

function obtained by OLDA is larger than or equal to that of
the optimal solution in either case, hence the solution found
by OLDA algorithm is optimal. ¤
Proof for Lemma 6: We prove Lemma 6 by contradiction.
Suppose there is one solution {di,k(i,x)} satisfying (4) and
(6) but OLDA fails to find a solution. This means that the if
condition on Line 22 in Algorithm 1 is true, and consequently,
for job J∗,k(∗,x),

D∗ −
M∗∑

m=k(∗,x)+1

C∗,m < d∗,k(∗,x).

In addition,

d∗,k(∗,x) = min
Ji,k(i,x)∈ω∗(Vx)

{ri,k(i,x)}+
∑

Ji,k(i,x)∈ω∗(Vx)

Ci,k(i,x).

(15)
Given that Ω(Vx) is schedulable, according to Lemma 1, we
have

min
Ji,k(i,x)∈ω∗(Vx)

{ri,k(i,x)}+
∑

Ji,k(i,x)∈ω∗(Vx)

Ci,k(i,x)

≤ max
Ji,k(i,x)∈ω∗(Vx)

{di,k(i,x)}. (16)

Combining (15) and (16), we have

D∗ −
M∗∑

m=k(∗,x)+1

C∗,m < max
Ji,k(i,x)∈ω∗(Vx)

{di,k(i,x)}. (17)

Assume that Jq,k(q,x) has the maximum local deadline among
all the jobs in ω∗(Vx) in the feasible solution {di,k(i,x)}. Then,

D∗ −
M∗∑

m=k(∗,x)+1

C∗,m < max
Ji,k(i,x)∈ω∗(Vx)

{di,k(i,x)}

= dq,k(q,x) ≤ Dq −
Mq∑

m=k(q,x)+1

Cq,m. (18)

In Algorithm 1, J∗,k(∗,x) is selected because it has the max-
imum upper bound on local deadline among all the jobs in
ω∗(Vx) (Line 16– 21). However, dq,k(q,x) > d∗,k(∗,x), which
is a contradiction. ¤

REFERENCES

[1] S. K. Baruah, L. E. Rosier, and R. R. Howell, “Algorithms and
complexity concerning the preemptive scheduling of periodic, real-time
tasks on one processor,” Real-Time Syst., vol. 2, no. 4, pp. 301–324,
1990.

[2] E. Bini and G. C. Buttazzo, “Biasing effects in schedulability measures,”
in ECRTS, Jul. 2004, pp. 196–203.

[3] G. Buttazzo, E. Bini, and Y. Wu, “Partitioning parallel applications on
multiprocessor reservations,” in ECRTS, 2010, pp. 24–33.

[4] S. Chatterjee and J. Strosnider, “Distributed pipeline scheduling: A
framework for distributed, heterogeneous real-time system design,”
1995.

[5] H. Chetto, M. Silly, and T. Bouchentouf, “Dynamic scheduling of real-
time tasks under precedence constraints,” Real-Time Systems, vol. 2, pp.
181–194, 1990.

[6] H. Chetto and M. Chetto, “Scheduling periodic and sporadic tasks in a
real-time system,” Information Processing Letters, vol. 30, pp. 177–184,
1989.

[7] A. Davare, Q. Zhu, M. Di Natale, C. Pinello, S. Kanajan, and
A. Sangiovanni-Vincentelli, “Period optimization for hard real-time
distributed automotive systems,” in DAC, 2007, pp. 278–283.

[8] W. Hawkins and T. Abdelzaher, “Towards feasible region calculus: An
end-to-end schedulability analysis of real-time multistage execution,” in
RTSS, 2005, pp. 75–86.

[9] P. Jayachandran and T. Abdelzaher, “Transforming distributed acyclic
systems into equivalent uniprocessors under preemptive and non-
preemptive scheduling,” in ECRTS, 2008, pp. 233 –242.

[10] ——, “End-to-end delay analysis of distributed systems with cycles in
the task graph,” in ECRTS, 2009, pp. 13 –22.

[11] ——, “Delay composition in preemptive and non-preemptive real-time
pipelines,” Real-Time Systems, vol. 40, pp. 290–320, 2008.

[12] J. Jonsson and K. G. Shin, “Robust adaptive metrics for deadline
assignment in distributed hard real-time systems,” Real-Time Syst.,
vol. 23, pp. 239–271, November 2002.

[13] D. Marinca, P. Minet, and L. George, “Analysis of deadline assignment
methods in distributed real-time systems,” Computer Communications,
vol. 27, no. 15, pp. 1412 – 1423, 2004.

[14] S. Matic and T. Henzinger, “Trading end-to-end latency for composabil-
ity,” in RTSS, 2005, pp. 12 pp. –110.

[15] J. Palencia and M. G. Harbour, “Offset-based response time analysis of
distributed systems scheduled under edf,” ECRTS, pp. 3–12, 2003.

[16] A. Rahni, E. Grolleau, and M. Richard, “Feasibility Analysis of Non-
Concrete Real-Time Transactions With EDF Assignment priority,” in
RTNS, 2008.

[17] S. Samii, P. Eles, Z. Peng, and A. Cervin, “Quality-driven synthesis of
embedded multi-mode control systems,” in DAC, July 2009, pp. 864
–869.

[18] N. Serreli, G. Lipari, and E. Bini, “The demand bound function interface
of distributed sporadic pipelines of tasks scheduled by edf,” in ECRTS,
2010, pp. 187 –196.

[19] ——, “The distributed deadline synchronization protocol for real-time
systems scheduled by edf,” in ETFA, 2010, pp. 1 –8.

[20] N. Serreli and E. Bini, “Deadline assignment for component-based
analysis of real-time transactions,” in WCRTS, 2009.

[21] R. J. Vanderbei, “Loqo users manual c version 4.05,” 2006.
[22] Y. Zhang, R. West, and X. Qi, “A virtual deadline scheduler for window-

constrained service guarantees,” in RTSS, 2004, pp. 151 – 160.
[23] W. Zheng, M. Di Natale, C. Pinello, P. Giusto, and A. S. Vincentelli,

“Synthesis of task and message activation models in real-time distributed
automotive systems,” in DATE, 2007, pp. 93–98.

